Language Identification using Warping and the Shifted Delta Cepstrum

This paper proposes the novel use of feature warping for automatic language identification, in combination with the shifted delta cepstrum (SDC) and perceptual linear predictive coefficients in a Gaussian mixture model (GMM) based system. Experimental results on various configurations of front-end techniques reported herein demonstrate that, besides providing robustness against channel mismatch and noise as found in existing literature, feature warping is useful more generally as a technique for pre-mapping data for improved compatibility with a GMM back-end. The configuration reported in this paper provides a language identification performance of 76.4% using the OGI/NIST database, a 46.5% relative reduction in error rate when compared with a benchmark system employing Mel frequency cepstral coefficients and the SDC