The high-order dynamic computational laboratory for CFD research and applications

A novel CFD code, named DynHoLab (Dynamic High-order Laboratory), is developed combining Python and Fortran languages. This enables fast development in a flexible, general and modular Python environment along with high CPU performance characteristic of Fortran language. At the present stage of development, the code is oriented towards the numerical simulation of compressible flows using high-order finite volume schemes (up to 7 order of accuracy) on block-structured meshes.

[1]  Aleksandar Jemcov,et al.  OpenFOAM: A C++ Library for Complex Physics Simulations , 2007 .

[2]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[3]  Christophe Eric Corre,et al.  Efficient High-order Schemes on Non-uniform Meshes for Multi-Dimensional Compressible Flows , 2001 .

[4]  Francis Y. Enomoto,et al.  THE CGNS SYSTEM , 1998 .

[5]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[6]  Scott E. Sherer,et al.  High-order compact finite-difference methods on general overset grids , 2005 .

[7]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[8]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[9]  Paola Cinnella,et al.  ROBUST SHAPE OPTIMIZATION OF UNCERTAIN DENSE GAS FLOWS THROUGH A PLANE TURBINE CASCADE , 2011 .

[10]  Thomas Hauser,et al.  Recent Updates to the CFD General Notation System (CGNS) , 2012 .

[11]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[12]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[13]  Seokkwan Yoon,et al.  An LU-SSOR scheme for the Euler and Navier-Stokes equations , 1987 .

[14]  Roger C Strawn,et al.  Software Design Strategies for Multidisciplinary Computational Fluid Dynamics , 2012 .

[15]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[16]  X. Gloerfelt,et al.  Study of interpolation methods for high-accuracy computations on overlapping grids , 2012 .

[17]  T. Quintino,et al.  COOLFluiD – A Collaborative Simulation Environment for Research in Aerodynamics , 2010 .

[18]  Dimitri J. Mavriplis,et al.  A Multi-Code Python-Based Infrastructure for Overset CFD with Adaptive Cartesian Grids , 2008 .

[19]  M. Hafez,et al.  Frontiers of Computational Fluid Dynamics 2002 , 2001 .

[20]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[21]  J. Benek,et al.  A flexible grid embedding technique with application to the Euler equations , 1983 .

[22]  Jeanne C. Adams Fortran 2003 Handbook , 2003 .

[23]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[24]  P. Cinnella,et al.  Coupled/Uncoupled solutions of RANS equations using a Jacobian-free Newton-Krylov method , 2013 .

[25]  Andrea Lani,et al.  The COOLFluiD Framework: Design Solutions for High Performance Object Oriented Scientific Computing Software , 2005, International Conference on Computational Science.

[26]  High-order residual-based compact schemes for compressible inviscid flows , 2007 .

[27]  J. Benek,et al.  A 3-D Chimera Grid Embedding Technique , 1985 .

[28]  F. Archambeau,et al.  Code Saturne: A Finite Volume Code for the computation of turbulent incompressible flows - Industrial Applications , 2004 .