PSilhOuette: Towards an Optimal Number of Clusters Using a Nested Particle Swarm Approach for Liver CT Image Segmentation

This paper proposes a nested particle swarm optimization (PSO) method to find the optimal number of clusters for segmenting a grayscale image. The proposed approach, herein denoted as PSilhOuette, comprises two hierarchically divided PSOs to solve two dependent problems: i) to find the most adequate number of clusters considering the silhouette index as a measure of similarity; and ii) to segment the image using the Fuzzy C-Means (FCM) approach with the number of clusters previously retrieved. Experimental results show that parent particles converge towards maximizing the silhouette value while, at the same time, child particles strive to minimize the FCM objective function.

[1]  Xiaolei Huang,et al.  Medical Image Segmentation , 2009 .

[2]  E. Corchado,et al.  Fuzzy information and engineering , 2007 .

[3]  Kuo-Lung Wu,et al.  Analysis of parameter selections for fuzzy c-means , 2012, Pattern Recognit..

[4]  Aboul Ella Hassanien,et al.  Automatic computer aided segmentation for liver and hepatic lesions using hybrid segmentations techniques , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[5]  Sankar K. Pal,et al.  Maximum Class Separability for Rough-Fuzzy C-Means Based Brain MR Image Segmentation , 2008, Trans. Rough Sets.

[6]  D. Feng,et al.  Segmentation of dynamic PET images using cluster analysis , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[7]  S. R. Kannan,et al.  A new segmentation system for brain MR images based on fuzzy techniques , 2008, Appl. Soft Comput..

[8]  M S van Leeuwen,et al.  Focal liver lesions: characterization with triphasic spiral CT. , 1996, Radiology.

[9]  Mahmoud R. El-Sakka,et al.  Fuzzy C-Means Clustering for Segmenting Carotid Artery Ultrasound Images , 2007, ICIAR.

[10]  Koon-Pong Wong Medical Image Segmentation: Methods and Applications in Functional Imaging , 2005 .

[11]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[12]  David G. Stork,et al.  Pattern Classification , 1973 .

[13]  Domenico Tegolo,et al.  Stable Automatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and a Modified Fuzzy C-Means Clustering , 2011, WILF.

[14]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[15]  Anca L. Ralescu,et al.  Fuzzy Cluster Validity with Generalized Silhouettes , 2012, MAICS.

[16]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[17]  Gerald Schaefer,et al.  Anisotropic Mean Shift Based Fuzzy C-Means Segmentation of Dermoscopy Images , 2009, IEEE Journal of Selected Topics in Signal Processing.

[18]  R. Shanmugalakshmi,et al.  Fundamentals of Digital Image Processing , 2006 .

[19]  Witold Pedrycz,et al.  Advances in Fuzzy Clustering and its Applications , 2007 .

[20]  Václav Snásel,et al.  Fuzzy C-Means Based Liver CT Image Segmentation with Optimum Number of Clusters , 2014, IBICA.

[21]  Abdul Rahman Ramli,et al.  Survey on liver CT image segmentation methods , 2011, Artificial Intelligence Review.

[22]  Escola Politécnica,et al.  Dependence Analysis of the Market Index Using Fuzzy c- Means Algorithm , 2011 .

[23]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[24]  Micael S. Couceiro,et al.  Analysis and Parameter Adjustment of the RDPSO Towards an Understanding of Robotic Network Dynamic P , 2012 .

[25]  Mohamed S. Kamel,et al.  Image Analysis and Recognition , 2014, Lecture Notes in Computer Science.

[26]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[27]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[28]  Jeff Z. Pan,et al.  An Argument-Based Approach to Using Multiple Ontologies , 2009, SUM.

[29]  Anca L. Ralescu,et al.  Center-Wise Intra-Inter Silhouettes , 2012, SUM.