Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion

We consider the incorporation of a time-consistent coherent risk measure into a multi-stage stochastic programming model, so that the model can be solved using a SDDP-type algorithm. We describe the implementation of this algorithm, and study the solutions it gives for an application of hydro-thermal scheduling in the New Zealand electricity system. The performance of policies using this risk measure at different levels of risk aversion is compared with the risk-neutral policy.

[1]  Jery R. Stedinger,et al.  SOCRATES: A system for scheduling hydroelectric generation under uncertainty , 1995, Ann. Oper. Res..

[2]  Werner Römisch,et al.  Sampling-based decomposition methods for risk-averse multistage programs , 2010 .

[3]  André Luís Marques Marcato,et al.  Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems , 2013, Eur. J. Oper. Res..

[4]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[5]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[6]  Vincent Guigues,et al.  SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning , 2014, Comput. Optim. Appl..

[7]  A. Turgeon Optimal operation of multireservoir power systems with stochastic inflows , 1980 .

[8]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[9]  Andy Philpott,et al.  Solving long-term hydro-thermal scheduling problems , 2011 .

[10]  J. M. Ukwejeh,et al.  Use of Storage Water in a Hydroelectric System , 2013 .

[11]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[12]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[13]  Andrzej Ruszczynski,et al.  Risk-averse dynamic programming for Markov decision processes , 2010, Math. Program..

[14]  Alexander Shapiro,et al.  On complexity of multistage stochastic programs , 2006, Oper. Res. Lett..

[15]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[16]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[17]  S. Granville,et al.  Portfolio Optimization of Hydroelectric Assets Subject to Financial Indicators , 2007, 2007 IEEE Power Engineering Society General Meeting.

[18]  Naomi Miller,et al.  Risk-Averse Two-Stage Stochastic Linear Programming: Modeling and Decomposition , 2011, Oper. Res..

[19]  Claudia A. Sagastizábal,et al.  The value of rolling-horizon policies for risk-averse hydro-thermal planning , 2012, Eur. J. Oper. Res..

[20]  Gerd Infanger,et al.  Cut sharing for multistage stochastic linear programs with interstage dependency , 1996, Math. Program..

[21]  J. M. Damázio,et al.  The use of PAR(p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the Brazilian hydropower system , 2005, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[22]  Birger Mo,et al.  Integrated risk management of hydro power scheduling and contract management , 2001 .

[23]  Alexander Shapiro,et al.  The empirical behavior of sampling methods for stochastic programming , 2006, Ann. Oper. Res..

[24]  Laureano F. Escudero,et al.  Medium range optimization of copper extraction planning under uncertainty in future copper prices , 2014, Eur. J. Oper. Res..