Some applications of S-restricted set partitions

In the paper, the authors present several new relations and applications for the combinatorial sequence that counts the possible partitions of a finite set with the restriction that the size of each block is contained in a given set. One of the main applications is in the study of lonesum matrices.

[1]  Benyi Beata Advances in Bijective Combinatorics , 2015 .

[2]  Toufik Mansour,et al.  A polynomial generalization of some associated sequences related to set partitions , 2017, Period. Math. Hung..

[3]  V. Murali,et al.  On some properties and relations between restricted barred preferential arrangements, multi-poly-Bernoulli numbers and related numbers , 2015, 1509.07352.

[4]  P. Barry On a Family of Generalized Pascal Triangles Defined by Exponential Riordan Arrays , 2007 .

[5]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[6]  István Mezö,et al.  Real zeros and partitions without singleton blocks , 2007, Eur. J. Comb..

[7]  Imad Eddine Bousbaa,et al.  Associated Lah numbers and r-Stirling numbers , 2014 .

[8]  Takao Komatsu,et al.  Generalized incomplete poly-Bernoulli and poly-Cauchy numbers , 2017, Period. Math. Hung..

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Zoltán Füredi,et al.  Davenport-Schinzel theory of matrices , 1992, Discret. Math..

[11]  Ji-Young Choi,et al.  On the Unimodality and Combinatorics of Bessel Numbers , 2003, Discret. Math..

[12]  Be'ata B'enyi,et al.  Combinatorial Properties of Poly-Bernoulli Relatives , 2016, Integers.

[13]  Beata Benyi Restricted lonesum matrices , 2017 .

[14]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[15]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[16]  Ken Kamano Lonesum decomposable matrices , 2018, Discret. Math..

[17]  T. Wakhare Refinements of the Bell and Stirling numbers , 2017, 1710.02956.

[18]  Takao Komatsu,et al.  Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers , 2015, 1510.05799.

[19]  N. Pippenger The Hypercube of Resistors, Asymptotic Expansions, and Preferential Arrangements , 2009, 0904.1757.

[20]  David Galvin,et al.  Restricted Stirling and Lah number matrices and their inverses , 2019, J. Comb. Theory, Ser. A.

[21]  Gi-Sang Cheon,et al.  r-Whitney numbers of Dowling lattices , 2012, Discret. Math..

[23]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[24]  J. L. Ramírez,et al.  Combinatorial and Arithmetical Properties of the Restricted and Associated Bell and Factorial Numbers , 2017, 1707.08138.

[25]  Andrei Z. Broder,et al.  The r-Stirling numbers , 1984, Discret. Math..

[26]  J. Pitman Some Probabilistic Aspects of Set Partitions , 1997 .

[27]  Ling Long,et al.  Reciprocity for multirestricted Stirling numbers , 2006, J. Comb. Theory, Ser. A.

[28]  David Galvin Restricted Stirling and Lah numbers, and their inverses , 2016 .

[29]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[30]  Chad Brewbaker,et al.  A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues. , 2008 .

[31]  Peter Hajnal,et al.  Combinatorics of poly-Bernoulli numbers , 2015, 1510.05765.

[32]  J. L. Ramírez,et al.  Some Determinants Involving Incomplete Fubini Numbers , 2018, Analele Universitatii "Ovidius" Constanta - Seria Matematica.

[33]  Masanobu Kaneko,et al.  On Poly-Bernoulli numbers , 1999 .

[34]  Some new identities and congruences for Fubini numbers , 2017 .