Particle Swarm Optimization Tuned Flatness-Based Generator Excitation Controller

An optimal transient controller for a synchronous generator in a multi-machine power system is designed using the concept of flatness-based feedback linearization in this paper. The computation of the flat output and corresponding controller for reduced order model of the synchronous generator is presented. The required feedback gains used to close the linearization loop is optimized using particle swarm optimization for maximum damping. Typical results obtained for transient disturbances on a two-area, four-generator power system equipped with the proposed controller on one generator and conventional power system stabilizers on the remaining generators are presented. The effectiveness of the flatness-based controller for multi-machine power systems is discussed.