Generative Probabilistic Models

Many content-based multimedia retrieval tasks can be seen as decision theory problems. Clearly, this is the case for classification tasks, like face detection, face recognition, or indoor/outdoor classification. In all these cases a system has to decide whether an image (or video) belongs to one class or another (respectively face or no face; face A, B, or C; and indoor or outdoor). Even the ad hoc retrieval tasks, where the goal is to find relevant documents given a description of an information need, can be seen as a decision theory problem: documents can be classified into relevant and non-relevant classes, or we can treat each of the documents in the collection as a separate class, and classify a query as belonging to one of these. In all these settings, a probabilistic approach seems natural: an image is assigned to the class with the highest probability.3 If some misclassifications are more severe than others, a decision theoretic approach should be taken, and images should be assigned to the class with lowest risk.

[1]  Hayit Greenspan,et al.  A Continuous Probabilistic Framework for Image Matching , 2001, Comput. Vis. Image Underst..

[2]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[3]  Thijs Westerveld,et al.  Using generative probabilistic models for multimedia retrieval , 2005, SIGF.

[4]  Jianping Fan,et al.  Semantic principal video shot classification via mixture Gaussian , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  Nuno Vasconcelos,et al.  Bayesian models for visual information retrieval , 2000 .

[7]  W. Bruce Croft,et al.  A general language model for information retrieval , 1999, CIKM '99.

[8]  Ophir Frieder,et al.  Information Retrieval: Algorithms and Heuristics (The Kluwer International Series on Information Retrieval) , 2004 .

[9]  Djoerd Hiemstra,et al.  A Probabilistic Multimedia Retrieval Model and Its Evaluation , 2003, EURASIP J. Adv. Signal Process..

[10]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[11]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[12]  David G. Stork,et al.  Pattern Classification , 1973 .

[13]  Djoerd Hiemstra,et al.  Language Modeling and Relevance , 2003 .

[14]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[15]  W. Bruce Croft,et al.  Relevance-Based Language Models : Estimation and Analysis , 2022 .

[16]  Michael I. Jordan Graphical Models , 2003 .

[17]  Djoerd Hiemstra,et al.  A Linguistically Motivated Probabilistic Model of Information Retrieval , 1998, ECDL.

[18]  T. Ianeva,et al.  A dynamic probabilistic retrieval model , 2004 .

[19]  Hayit Greenspan,et al.  Probabilistic space-time video modeling via piecewise GMM , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[21]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[22]  Paul Ogilvie,et al.  Using Language Models for Flat Text Queries in XML Retrieval , 2003 .

[23]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[24]  Frederick Jelinek,et al.  Interpolated estimation of Markov source parameters from sparse data , 1980 .

[25]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[26]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  A. P. de Vries,et al.  Generative probabilistic models for multimedia retrieval: query generation against document generation , 2005 .