Experimental research on moulding of graphene/PEKK composite powder by spark plasma sintering technology

[1]  O. Adesina,et al.  Spark plasma sintering of polymer and polymer-based composites: a review , 2021, The International Journal of Advanced Manufacturing Technology.

[2]  O. Adesina,et al.  Correction to: Spark plasma sintering of polymer and polymer-based composites: a review , 2021, The International Journal of Advanced Manufacturing Technology.

[3]  Bankole I. Oladapo,et al.  3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review. , 2021, Colloids and surfaces. B, Biointerfaces.

[4]  H. Alshahrani,et al.  Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges , 2021 .

[5]  Dichen Li,et al.  PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation , 2021 .

[6]  Ming Cao,et al.  Investigation of Electromagnetic Pulse Compaction on Conducting Graphene/PEKK Composite Powder , 2021, Materials.

[7]  A. Elharfi,et al.  Polymer composite materials: A comprehensive review , 2021, Composite Structures.

[8]  M. K. Bakri,et al.  Applications of sustainable polymer composites in automobile and aerospace industry , 2021 .

[9]  A. Heidarzadeh,et al.  Fundamentals of Spark Plasma Sintering for Metallic, Ceramic, and Polymer Matrix Composites Production , 2021 .

[10]  A. Yella,et al.  Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications , 2020 .

[11]  anonymous,et al.  Comprehensive review , 2019 .

[12]  S. Bartolucci,et al.  A Study on the Use of Graphene-PEEK Composites As High Temperature Adhesives: Mechanical Properties and Microwave Activation , 2017 .

[13]  Shengdun Zhao,et al.  Research of the Gurson damage model of the different yield functions during the deep-drawing process , 2017 .

[14]  N. Grange,et al.  Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components , 2017 .

[15]  L. Xiaoyu,et al.  Advances of graphene application in electrode materials for lithium ion batteries , 2015 .

[16]  R. Yunus,et al.  Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders , 2015 .

[17]  P. Klimczyk,et al.  Thermal properties of pressure sintered alumina–graphene composites , 2015, Journal of Thermal Analysis and Calorimetry.

[18]  H. Sue,et al.  High-temperature steam-treatment of PBI, PEEK, and PEKK polymers with H2O and D2O: A solid-state NMR study , 2014 .

[19]  Jun-ting Luo,et al.  Thermal-electrical coupled analysis and experimental investigation on spark plasma sintering of SiC ceramics , 2012, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[20]  J. Tirillò,et al.  Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties , 2010 .

[21]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[22]  B. Azhdar,et al.  Polymer–nanofiller prepared by high‐energy ball milling and high velocity cold compaction , 2008 .

[23]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[24]  J. Seiber Status and Prospects , 2005 .

[25]  M. Nygren,et al.  Formidable Increase in the Superplasticity of Ceramics in the Presence of an Electric Field , 2003 .