Crowdsourcing Backdoor Identification for Combinatorial Optimization

We will show how human computation insights can be key to identifying so-called backdoor variables in combinatorial optimization problems. Backdoor variables can be used to obtain dramatic speedups in combinatorial search. Our approach leverages the complementary strength of human input, based on a visual identification of problem structure, crowdsourcing, and the power of combinatorial solvers to exploit complex constraints. We describe our work in the context of the domain of materials discovery. The motivation for considering the materials discovery domain comes from the fact that new materials can provide solutions for key challenges in sustainability, e.g., in energy, new catalysts for more efficient fuel cell technology.

[1]  R. M. Fleming,et al.  Discovery of a useful thin-film dielectric using a composition-spread approach , 1998, Nature.

[2]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[3]  Jörg Hoffmann,et al.  Structure and Problem Hardness: Goal Asymmetry and DPLL Proofs in SAT-Based Planning , 2006, Log. Methods Comput. Sci..

[4]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[5]  Matteo Fischetti,et al.  Backdoor Branching , 2011, INFORMS J. Comput..

[6]  John M. Gregoire,et al.  Improved Fuel Cell Oxidation Catalysis in Pt1−xTax† , 2010 .

[7]  David Baker,et al.  Algorithm discovery by protein folding game players , 2011, Proceedings of the National Academy of Sciences.

[8]  Yuri Malitsky,et al.  Backdoors to Combinatorial Optimization: Feasibility and Optimality , 2009, CPAIOR.

[9]  Fedor V. Fomin,et al.  The Multivariate Algorithmic Revolution and Beyond , 2012, Lecture Notes in Computer Science.

[10]  Luis von Ahn,et al.  Human computation , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[11]  Toby Walsh,et al.  Backbones and Backdoors in Satisfiability , 2005, AAAI.

[12]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[13]  Stefan Szeider,et al.  Backdoor Sets for DLL Subsolvers , 2005, Journal of Automated Reasoning.

[14]  Bart Selman,et al.  On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search , 2003 .

[15]  Anna Philippou,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 2018, Lecture Notes in Computer Science.

[16]  Stefano Ermon,et al.  SMT-Aided Combinatorial Materials Discovery , 2012, SAT.

[17]  Ronan Le Bras,et al.  Constraint Reasoning and Kernel Clustering for Pattern Decomposition with Scaling , 2011, CP.

[18]  Stefan Szeider,et al.  Backdoors to Satisfaction , 2011, The Multivariate Algorithmic Revolution and Beyond.

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[21]  Adrien Treuille,et al.  Predicting protein structures with a multiplayer online game , 2010, Nature.