Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces

Abstract The effective properties of piezoelectric composites with ellipsoidal particles embedded imperfectly in the matrix are investigated. The dilute approximation method, the Mori–Tanaka method, the self-consistent method, and the differential scheme are all modified to incorporate the bonding imperfection to predict the effective elastic, dielectric, and piezoelectric moduli of the composite. The corresponding formulae are rigorously derived with the help of the modified piezoelectric Eshelby tensor. Numerical examples are considered to illustrate the effect of imperfect interfaces on the effective properties of piezoelectric composites. It is found that good agreement with the existing experiments can be achieved by properly selecting the interface parameters. This clarifies the importance of the inclusion of imperfect interfaces in the modeling. The particular size-dependent characteristic due to the interface imperfection is also investigated numerically.

[1]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[2]  M S Vijaya,et al.  Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique , 2002 .

[3]  Tungyang Chen,et al.  On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media , 1991 .

[4]  J. Qu Eshelby Tensor for an Elastic Inclusion With Slightly Weakened Interface , 1993 .

[5]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[6]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of polycrystals , 1962 .

[7]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[8]  Bhushan Lal Karihaloo,et al.  Eshelby formalism for nano-inhomogeneities , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[10]  B. Karihaloo,et al.  Strain distributions in nano-onions with uniform and non-uniform compositions , 2006, Nanotechnology.

[11]  J. Ju,et al.  Effective Elastic Moduli of Spherical Particle Reinforced Composites Containing Imperfect Interfaces , 2012 .

[12]  M. Taya,et al.  On Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Fiber-End Cracks Under Uniaxial Applied Stress , 1981 .

[13]  Z. Gao A Circular Inclusion With Imperfect Interface: Eshelby’s Tensor and Related Problems , 1995 .

[14]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[15]  T. Furukawa,et al.  Piezoelectricity and pyroelectricity in polymers , 1989 .

[16]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[17]  Zvi Hashin,et al.  Thermoelastic properties of particulate composites with imperfect interface , 1991 .

[18]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .

[19]  B. Satish,et al.  Piezoelectric properties of ferroelectric PZT-polymer composites , 2001 .

[20]  W. Deeg,et al.  The analysis of dislocation, crack, and inclusion problems in piezoelectric solids , 1980 .

[21]  L. Walpole,et al.  On the overall elastic moduli of composite materials , 1969 .

[22]  Q. He,et al.  Eshelby's tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza's interface thermal resistance , 2011 .

[23]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[24]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[25]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[26]  B. Karihaloo,et al.  Effective thermal conductivities of heterogeneous media containing multiple imperfectly bonded inclusions , 2007 .

[27]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[28]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[30]  Zvi Hashin,et al.  The differential scheme and its application to cracked materials , 1988 .

[31]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[32]  R. Kar-Gupta,et al.  Electromechanical response of piezoelectric composites : Effects of geometric connectivity and grain size , 2008 .

[33]  M. Beran,et al.  Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media , 1966 .

[34]  Bhushan Lal Karihaloo,et al.  Theory of Elasticity at the Nanoscale , 2009 .

[35]  Bhushan Lal Karihaloo,et al.  Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress , 2005 .

[36]  Bhushan Lal Karihaloo,et al.  Thermo-elastic properties of heterogeneous materials with imperfect interfaces : Generalized Levin's formula and Hill's connections , 2007 .

[37]  Touvia Miloh,et al.  Imperfect soft and stiff interfaces in two-dimensional elasticity , 2001 .

[38]  Tungyang Chen,et al.  Mori-Tanaka Estimates of the Overall Elastic Moduli of Certain Composite Materials , 1992 .

[39]  Zvi Hashin,et al.  The Spherical Inclusion With Imperfect Interface , 1991 .

[40]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[41]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[42]  George J. Weng,et al.  Explicit evaluation of Willis' bounds with ellipsoidal inclusions , 1992 .

[43]  Zvi Hashin,et al.  Thermoelastic properties of fiber composites with imperfect interface , 1990 .

[44]  Huiling Duan,et al.  An anti-interpenetration model and connections between interphase and interface models in particle-reinforced composites☆ , 2005 .

[45]  Jan Drewes Achenbach,et al.  Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites , 1989 .

[46]  Y. Poon,et al.  Theoretical predictions on the effective piezoelectric coefficients of 0–3 PZT/Polymer composites , 2007 .

[47]  Jianmin Qu,et al.  The effect of slightly weakened interfaces on the overall elastic properties of composite materials , 1993 .

[48]  A. Norris A differential scheme for the effective moduli of composites , 1985 .

[49]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[50]  L. Walpole THE ELASTIC BEHAVIOUR OF A SUSPENSION OF SPHERICAL PARTICLES , 1972 .

[51]  M. Ferrari Asymmetry and the high concentration limit of the Mori-Tanaka effective medium theory , 1991 .

[52]  D. M. Barnett,et al.  Dislocations and line charges in anisotropic piezoelectric insulators , 1975 .

[53]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[54]  Y. Benveniste,et al.  A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media , 2006 .

[55]  D. Fang,et al.  A unified model for piezocomposites with non-piezoelectric matrix and piezoelectric ellipsoidal inclusions , 1999 .

[56]  E. Fukada,et al.  Electromechanical Properties in the Composites of Epoxy Resin and PZT Ceramics , 1976 .

[57]  M. Taya,et al.  Metal Matrix Composites: Thermomechanical Behavior , 1989 .

[58]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[59]  G. Weng THE THEORETICAL CONNECTION BETWEEN MORI-TANAKA'S THEORY AND THE HASHIN-SHTRIKMAN-WALPOLE BOUNDS , 1990 .