SICs: Some Explanations

The problem of constructing maximal equiangular tight frames or SICs was raised by Zauner in 1998. Four years ago it was realized that the problem is closely connected to a major open problem in number theory. We discuss why such a connection was perhaps to be expected, and give a simplified sketch of some developments that have taken place in the past 4 years. The aim, so far unfulfilled, is to prove existence of SICs in an infinite sequence of dimensions.

[1]  Erwin Schrödinger Science And Humanism , 1951 .

[2]  H. Weyl Gruppentheorie und Quantenmechanik , 1928 .

[3]  Andrei Khrennikov,et al.  Aims and Scope of the Special Issue, “Quantum Foundations: Informational Perspective” , 2017 .

[4]  L-functions at s = 1. III. Totally real fields and Hilbert's twelfth problem , 1976 .

[5]  R. Penrose Angular Momentum: an Approach to Combinatorial Space-Time , 1971 .

[6]  A. J. Scott,et al.  SIC-POVMs: A new computer study , 2009 .

[7]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[8]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[9]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[10]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[11]  David Marcus Appleby,et al.  Tight frames, Hadamard matrices and Zauner’s conjecture , 2019, Journal of Physics A: Mathematical and Theoretical.

[12]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[13]  Christopher A. Fuchs,et al.  The SIC Question: History and State of Play , 2017, Axioms.

[14]  Irina Dumitru,et al.  Aligned SICs and embedded tight frames in even dimensions , 2019, Journal of Physics A: Mathematical and Theoretical.

[15]  C. Fuchs,et al.  From Quantum Interference to Bayesian Coherence and Back Round Again , 2009 .

[16]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[17]  T. G. Room,et al.  On the Clifford collineation, transform and similarity groups. II. , 1961 .

[18]  S. Flammia,et al.  Dimension towers of SICs. I. Aligned SICs and embedded tight frames , 2017, 1707.09911.

[19]  Blake C. Stacey,et al.  Symmetric informationally complete measurements identify the irreducible difference between classical and quantum systems , 2018, Physical Review Research.

[20]  Ferenc Szöllősi,et al.  All complex equiangular tight frames in dimension 3 , 2014 .

[21]  Blake C. Stacey,et al.  Introducing the Qplex: a novel arena for quantum theory , 2016, 1612.03234.

[22]  Gene S. Kopp SIC-POVMs and the Stark Conjectures , 2018, International Mathematics Research Notices.

[23]  Marcus Appleby,et al.  Generating ray class fields of real quadratic fields via complex equiangular lines , 2016, Acta Arithmetica.

[24]  Armin Tavakoli,et al.  Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments , 2019, Science Advances.

[25]  S. Salamon,et al.  Moment maps and Galois orbits for SIC-POVMs , 2019, 1912.03209.

[26]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[27]  Klaus Hulek,et al.  Projective geometry of elliptic curves , 1986 .

[29]  Godfrey H. Hardy,et al.  An introduction to the theory of numbers (5. ed.) , 1995 .

[30]  Julian Schwinger,et al.  Quantum Mechanics: Symbolism of Atomic Measurements , 2001 .

[31]  David Marcus Appleby,et al.  Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..

[32]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[33]  Marcus Appleby,et al.  SICs and Algebraic Number Theory , 2017, 1701.05200.

[34]  Vasyl Ostrovskyi,et al.  Geometric properties of SIC-POVM tensor square , 2022, Letters in Mathematical Physics.

[35]  A. J. Scott,et al.  Fibonacci-Lucas SIC-POVMs , 2017, 1707.02944.

[36]  M. Appleby,et al.  Simplified exact SICS , 2018, Journal of Mathematical Physics.

[37]  O. Hesse,et al.  Über die Wendepuncte der Curven dritter Ordnung. (Fortsetzung zu voriger Abhandlung). , 1844 .

[38]  Shayne Waldron,et al.  Constructing exact symmetric informationally complete measurements from numerical solutions , 2017, 1703.05981.

[39]  S. Waldron An Introduction to Finite Tight Frames , 2018 .

[40]  A. J. Scott SICs: Extending the list of solutions , 2017 .

[41]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .