SICs: Some Explanations
暂无分享,去创建一个
[1] Erwin Schrödinger. Science And Humanism , 1951 .
[2] H. Weyl. Gruppentheorie und Quantenmechanik , 1928 .
[3] Andrei Khrennikov,et al. Aims and Scope of the Special Issue, “Quantum Foundations: Informational Perspective” , 2017 .
[4] L-functions at s = 1. III. Totally real fields and Hilbert's twelfth problem , 1976 .
[5] R. Penrose. Angular Momentum: an Approach to Combinatorial Space-Time , 1971 .
[6] A. J. Scott,et al. SIC-POVMs: A new computer study , 2009 .
[7] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[8] A. J. Scott,et al. Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .
[9] Huangjun Zhu. SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.
[10] A. Gleason. Measures on the Closed Subspaces of a Hilbert Space , 1957 .
[11] David Marcus Appleby,et al. Tight frames, Hadamard matrices and Zauner’s conjecture , 2019, Journal of Physics A: Mathematical and Theoretical.
[12] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[13] Christopher A. Fuchs,et al. The SIC Question: History and State of Play , 2017, Axioms.
[14] Irina Dumitru,et al. Aligned SICs and embedded tight frames in even dimensions , 2019, Journal of Physics A: Mathematical and Theoretical.
[15] C. Fuchs,et al. From Quantum Interference to Bayesian Coherence and Back Round Again , 2009 .
[16] D. M. Appleby. SIC-POVMs and the Extended Clifford Group , 2004 .
[17] T. G. Room,et al. On the Clifford collineation, transform and similarity groups. II. , 1961 .
[18] S. Flammia,et al. Dimension towers of SICs. I. Aligned SICs and embedded tight frames , 2017, 1707.09911.
[19] Blake C. Stacey,et al. Symmetric informationally complete measurements identify the irreducible difference between classical and quantum systems , 2018, Physical Review Research.
[20] Ferenc Szöllősi,et al. All complex equiangular tight frames in dimension 3 , 2014 .
[21] Blake C. Stacey,et al. Introducing the Qplex: a novel arena for quantum theory , 2016, 1612.03234.
[22] Gene S. Kopp. SIC-POVMs and the Stark Conjectures , 2018, International Mathematics Research Notices.
[23] Marcus Appleby,et al. Generating ray class fields of real quadratic fields via complex equiangular lines , 2016, Acta Arithmetica.
[24] Armin Tavakoli,et al. Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments , 2019, Science Advances.
[25] S. Salamon,et al. Moment maps and Galois orbits for SIC-POVMs , 2019, 1912.03209.
[26] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[27] Klaus Hulek,et al. Projective geometry of elliptic curves , 1986 .
[29] Godfrey H. Hardy,et al. An introduction to the theory of numbers (5. ed.) , 1995 .
[30] Julian Schwinger,et al. Quantum Mechanics: Symbolism of Atomic Measurements , 2001 .
[31] David Marcus Appleby,et al. Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..
[32] W. Wootters. A Wigner-function formulation of finite-state quantum mechanics , 1987 .
[33] Marcus Appleby,et al. SICs and Algebraic Number Theory , 2017, 1701.05200.
[34] Vasyl Ostrovskyi,et al. Geometric properties of SIC-POVM tensor square , 2022, Letters in Mathematical Physics.
[35] A. J. Scott,et al. Fibonacci-Lucas SIC-POVMs , 2017, 1707.02944.
[36] M. Appleby,et al. Simplified exact SICS , 2018, Journal of Mathematical Physics.
[37] O. Hesse,et al. Über die Wendepuncte der Curven dritter Ordnung. (Fortsetzung zu voriger Abhandlung). , 1844 .
[38] Shayne Waldron,et al. Constructing exact symmetric informationally complete measurements from numerical solutions , 2017, 1703.05981.
[39] S. Waldron. An Introduction to Finite Tight Frames , 2018 .
[40] A. J. Scott. SICs: Extending the list of solutions , 2017 .
[41] G. Zauner,et al. QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .