Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys

We study the expected redshift evolution of galaxy cluster abundance between 0 ≲ z ≲ 3 in different cosmologies, including the effects of the cosmic equation of state parameter w ≡ p/ρ. Using the halo mass function obtained in recent large-scale numerical simulations, we model the expected cluster yields in a 12 deg2 Sunyaev-Zeldovich effect (SZE) survey and a deep 104 deg2 X-ray survey over a wide range of cosmological parameters. We quantify the statistical differences among cosmologies using both the total number and redshift distribution of clusters. Provided that the local cluster abundance is known to a few percent accuracy, we find only mild degeneracies between w and either Ωm or h. As a result, both surveys will provide improved constraints on Ωm and w. The Ωm-w degeneracy from both surveys is complementary to those found either in studies of cosmic microwave background (CMB) anisotropies or of high-redshift supernovae (SNe). As a result, combining these surveys together with either CMB or SNe studies can reduce the statistical uncertainty on both w and Ωm to levels below what could be obtained by combining only the latter two data sets. Our results indicate a formal statistical uncertainty of ≈3% (68% confidence) on both Ωm and w when the SZE survey is combined with either the CMB or SN data; the large number of clusters in the X-ray survey further suppresses the degeneracy between w and both Ωm and h. Systematics and internal evolution of cluster structure at the present pose uncertainties above these levels. We briefly discuss and quantify the relevant systematic errors. By focusing on clusters with measured temperatures in the X-ray survey, we reduce our sensitivity to systematics such as nonstandard evolution of internal cluster structure.

[1]  S. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[2]  J. Mohr,et al.  Effects of Preheating on X-Ray Scaling Relations in Galaxy Clusters , 2000, astro-ph/0010584.

[3]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[4]  M. White,et al.  Boomerang Returns Unexpectedly , 2000, astro-ph/0004385.

[5]  J. Mohr,et al.  Expectations for an Interferometric Sunyaev-Zeldovich Effect Survey for Galaxy Clusters , 1999, astro-ph/9912364.

[6]  J. Mohr,et al.  Imaging the Sunyaev–Zel'dovich Effect , 1999, astro-ph/9905255.

[7]  Paul J. Steinhardt,et al.  Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.

[8]  A. Romer,et al.  A Serendipitous Galaxy Cluster Survey with XMM: Expected Catalog Properties and Scientific Applications , 1999, astro-ph/9911499.

[9]  P. Steinhardt,et al.  Cosmology - The cosmic triangle: Revealing the state of the universe , 1999, astro-ph/9906463.

[10]  Gus Evrard,et al.  Properties of the Intracluster Medium in an Ensemble of Nearby Galaxy Clusters , 1999, astro-ph/9901281.

[11]  M. White,et al.  Constraining Dark Energy with Type Ia Supernovae and Large-Scale Structure , 1999, astro-ph/9901052.

[12]  Jounghun Lee,et al.  Comparison of Analytical Mass Functions with Numerical Simulations , 1998, astro-ph/9811004.

[13]  A. Evrard,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1998, astro-ph/9806353.

[14]  P. Steinhardt,et al.  Resolving the cosmological missing energy problem , 1998, astro-ph/9804285.

[15]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[16]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[17]  Wolfgang Burkert,et al.  X-ray tests and calibrations of the ABRIXAS mirror systems , 1998, Optics & Photonics.

[18]  Gregory Y. Prigozhin,et al.  Optimizing the ACIS effective area and energy resolution , 1998, Optics & Photonics.

[19]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[20]  P. Steinhardt,et al.  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[21]  Xiaohui Fan,et al.  The Most Massive Distant Clusters: Determining Ω and σ8 , 1998, astro-ph/9803277.

[22]  M. White Complementary Measures of the Mass Density and Cosmological Constant , 1998, astro-ph/9802295.

[23]  Michael J. Pivovaroff,et al.  X-ray CCD calibration for the AXAF CCD Imaging Spectrometer , 1996, Optics & Photonics.

[24]  P. Steinhardt,et al.  Quintessential Cosmology Novel Models of Cosmological Structure Formation , 1998 .

[25]  J. Holtzman,et al.  Cold dark matter variant cosmological models — I. Simulations and preliminary comparisons , 1997, astro-ph/9712142.

[26]  S. Burles,et al.  The Deuterium Abundance Towards Q1937-1009 , 1997, astro-ph/9712108.

[27]  M. Markevitch,et al.  The Temperature Structure of 30 Nearby Clusters Observed with ASCA: Similarity of Temperature Profiles , 1997, astro-ph/9711289.

[28]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[29]  J. Mohr,et al.  An X-Ray Size-Temperature Relation for Galaxy Clusters: Observation and Simulation , 1997, astro-ph/9707184.

[30]  C. Kochanek Rebuilding the Cepheid Distance Scale. I. A Global Analysis of Cepheid Mean Magnitudes , 1997, astro-ph/9703059.

[31]  M. White,et al.  CDM models with a smooth component , 1997, astro-ph/9701138.

[32]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[33]  U. Pen Normalizing the Temperature Function of Clusters of Galaxies , 1996, astro-ph/9610147.

[34]  A. Liddle,et al.  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[35]  A. Evrard,et al.  Mass estimates of X-ray clusters , 1995, astro-ph/9510058.

[36]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[37]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[38]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[39]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[40]  R. Schild,et al.  The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis , 1990 .

[41]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[42]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[43]  J. Frieman,et al.  Cosmology with Decaying Vacuum Energy , 1987 .

[44]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[45]  Barham W. Smith,et al.  Soft X-ray spectrum of a hot plasma. , 1977 .

[46]  W. Press,et al.  Remark on the Statistical Significance of Flares in Poisson Count Data , 1974 .