Track-structure codes in radiation research

Monte Carlo track-structure simulation provides a near accurate description of the passage of charge particle in water as a surrogate for biological tissue. Radiation transport codes and Monte Carlo track-structure codes are widely used in radiation biophysics, dosimetry and microdosimetry, clinical radiotherapy, in space radiation program and accelerator design and research. Over the past decade the number of Monte Carlo track codes simulating a variety of different types of radiations has increased rapidly. In this paper we provide a review of recent progress in the development of particle track simulation for electron, low-energy light ions and finally the recent model development for the low-energy electron cross-sections in liquid water.

[1]  W. E. Wilson,et al.  A Monte Carlo code for positive ion track simulation , 1999, Radiation and environmental biophysics.

[2]  M. Katayama,et al.  THE YIELD OF HYDRATED ELECTRONS AT 30 PICOSECONDS , 1982 .

[3]  A. Kellerer,et al.  Further Development of the Variance-Covariance Method , 1990 .

[4]  L. Cirioni,et al.  Accurate transport simulation of electron tracks in the energy range 1 keV-4 MeV , 2004 .

[5]  D. Planes,et al.  Wavenumber dependence of the energy loss function of graphite and aluminium , 1996 .

[6]  R. Katz The Parameter-Free Track Structure Model of Scholz and Kraft for Heavy-Ion Cross Sections , 2003, Radiation research.

[7]  S. K. Allison Experimental Results on Charge-Changing Collisions of Hydrogen and Helium Atoms and Ions at Kinetic Energies above 0.2 kev , 1958 .

[8]  C. Dukes,et al.  Search for the plasmon in condensed water , 2001 .

[9]  J. Sempau,et al.  Practical aspects of Monte Carlo simulation of charged particle transport: Mixed algorithms and variance reduction techniques , 1999, Radiation and environmental biophysics.

[10]  J. Hubbard The Dielectric Theory of Electronic Interactions in Solids , 1955 .

[11]  S. Pimblott,et al.  Structure of electron tracks in water. 1. Distribution of energy deposition events , 1990 .

[12]  Herwig G. Paretzke,et al.  Inelastic-collision cross sections of liquid water for interactions of energetic protons , 2000 .

[13]  W. E. Wilson,et al.  Secondary Electron Emission from Ionization of Water Vapor by 0.3- to 2.0-MeV He+ and He}2+ Ions , 1980 .

[14]  G. Diercksen,et al.  Calculation of double differential cross sections for the interaction of electrons with a water molecule, clusters of water molecules, and liquid water , 1989 .

[15]  A. M. Stoneham Kinetics of Nonhomogeneous Processes: Ed. G.R. Freeman (John Wiley and Sons, New York, Chichester, 1987); Price: -P95.50 , 1987 .

[16]  Rudd,et al.  Angular and energy dependence of cross sections for ejection of electrons from water vapor. I. 50-2000-eV electron impact. , 1986, Physical review. A, General physics.

[17]  A. Elliot,et al.  Temperature dependence of g values for H2O and D2O irradiated with low linear energy transfer radiation , 1993 .

[18]  David Liljequist,et al.  Monte Carlo simulation of 0.1–100 keV electron and positron transport in solids using optical data and partial wave methods , 1996 .

[19]  A. Beaudré,et al.  Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water , 1990 .

[20]  A. Mozumder Early events in radiation chemistry: An introduction☆ , 1989 .

[21]  Marko Moscovitch,et al.  Inelastic collision characteristics of electrons in liquid water , 2002 .

[22]  Simon M. Pimblott,et al.  Stochastic Simulation of the Electron Radiolysis of Water and Aqueous Solutions , 1997 .

[23]  A. Nahum,et al.  Condensed-history Monte-Carlo simulation for charged particles: what can it do for us? , 1999, Radiation and environmental biophysics.

[24]  M. Varma,et al.  Physical and Chemical Mechanisms in Molecular Radiation Biology , 2012, Basic Life Sciences.

[25]  L. Toburen,et al.  Development of a Monte Carlo track structure code for low-energy protons in water , 2001, International journal of radiation biology.

[26]  I. K. Bronić W Values in Propane-Based Tissue-Equivalent Gas , 1997 .

[27]  James E. Turner,et al.  Physical and Chemical Development of Electron Tracks in Liquid Water , 1983 .

[28]  H. Nikjoo,et al.  Modelling the effect of incorporated halogenated pyrimidine on radiation-induced DNA strand breaks , 2002, International journal of radiation biology.

[29]  J. LaVerne OH Radicals and Oxidizing Products in the Gamma Radiolysis of Water , 2000, Radiation research.

[30]  C. Kao,et al.  The complete optical spectrum of liquid water measured by inelastic x-ray scattering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. E. Rudd,et al.  Secondary electron spectra from charged particle interactions , 1996 .

[32]  D. Liljequist,et al.  A simple calculation of inelastic mean free path and stopping power for 50 eV-50 keV electrons in solids , 1983 .

[33]  A. Green,et al.  Analytic Cross Sections for Inelastic Collisions of Protons and Hydrogen Atoms with Atomic and , 1971 .

[34]  K. H. Chadwick,et al.  Biophysical modelling of radiation effects , 1992 .

[35]  T. Sakae,et al.  Elastic scattering of electrons by water molecules over the range 100-1000 eV , 1986 .

[36]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[37]  W. Nelson,et al.  Monte Carlo Transport of Electrons and Photons , 1988 .

[38]  José M. Fernández-Varea,et al.  Inelastic scattering of electrons in solids from a generalized oscillator strength model using optical and photoelectric data , 1993 .

[39]  W. Fite,et al.  Electronic and Atomic Collisions. , 1965, Science.

[40]  A. Kellerer Linear energy transfer , 1970 .

[41]  Mitio Inokuti,et al.  Inelastic Collisions of Fast Charged Particles with Atoms and Molecules-The Bethe Theory Revisited , 1971 .

[42]  Martin J. Berger,et al.  Multiple-Scattering Angular Deflections and Energy- Loss Straggling , 1988 .

[43]  K. Karava,et al.  Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. , 2003, Physics in medicine and biology.

[44]  Herwig G. Paretzke,et al.  Electron inelastic-scattering cross sections in liquid water , 1999 .

[45]  Andrew R. Cook,et al.  Spur Decay of the Solvated Electron in Picosecond Radiolysis Measured with Time-Correlated Absorption Spectroscopy † , 2000 .

[46]  M. Inokuti,et al.  The Bethe surface of liquid water , 1998, Radiation and environmental biophysics.

[47]  R. N. Hamm,et al.  Collective oscillation in liquid water , 1974 .

[48]  Kostas Kostarelos,et al.  A Monte Carlo track structure code for electrons (~10 eV-10 keV) and protons (~0.3-10 MeV) in water: partitioning of energy and collision events , 2000 .

[49]  S. Uehara,et al.  Energy spectra of secondary electrons in water vapour , 1996, Radiation and environmental biophysics.

[50]  Rudd,et al.  Ionization cross sections for 10-300-keV/u and electron-capture cross sections for 5-150-keV/u 3He2+ ions in gases. , 1985, Physical review. A, General physics.

[51]  D. R. Penn,et al.  Electron mean-free-path calculations using a model dielectric function. , 1987, Physical review. B, Condensed matter.

[52]  J. Fernández-Varea,et al.  Comparison of Monte Carlo calculated electron slowing-down spectra generated by 60Co gamma-rays, electrons, protons and light ions. , 2002, Physics in medicine and biology.

[53]  G. Horneck,et al.  Biological Effects and Physics of Solar and Galactic Cosmic Radiation , 1993, NATO ASI Series.

[54]  D. Molina,et al.  A study on the collision of hydrogen ions H1+, H2+ and H3+ with a water-vapour target , 1970 .

[55]  J. Olivero,et al.  Electron deposition in water vapor, with atmospheric applications , 1972 .

[56]  Hooshang Nikjoo,et al.  The Effect of Model Approximations on Single-Collision Distributions of Low-Energy Electrons in Liquid Water , 2005, Radiation research.

[57]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[58]  J. W. Humberston Classical mechanics , 1980, Nature.

[59]  S. Uehara,et al.  Track Structure Studies of Biological Systems , 2003 .

[60]  D. Emfietzoglou Semi-empirical inelastic cross sections for electron transport in liquid water. , 2002, Radiation Protection Dosimetry.

[61]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[62]  John W. Norbury,et al.  Transport Methods and Inter-actions for Space Radiations , 2003 .

[63]  Rudd,et al.  Angular and energy dependence of cross sections for ejection of electrons from water vapor. II. 15-150-keV proton impact. , 1986, Physical review. A, General physics.

[64]  S. Uehara The development of a Monte Carlo code simulating electron-photon showers and its evaluation by various transport benchmarks , 1986 .

[65]  Francis A Cucinotta,et al.  A Complete Dielectric Response Model for Liquid Water: A Solution of the Bethe Ridge Problem , 2005, Radiation research.

[66]  A. Chatterjee,et al.  Computer simulation of initial events in the biochemical mechanisms of DNA damage. , 1993, Advances in radiation biology.

[67]  D. Goodhead,et al.  Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations. , 2000, International journal of radiation biology.

[68]  J. C. Ashley Simple model for electron inelastic mean free paths: Application to condensed organic materials , 1982 .

[69]  H. Schuhmacher,et al.  New Analytical Representation of W Values for Protons in Methane-Based Tissue-Equivalent Gas , 1994 .

[70]  Leif E. Peterson,et al.  Uncertainties in estimates of the risks of late effects from space radiation. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[71]  A. Kellerer,et al.  Criteria for the applicability of LET. , 1975, Radiation research.

[72]  P HOWARD-FLANDERS,et al.  Physical and chemical mechanisms in the injury of cells of ionizing radiations. , 1958, Advances in biological and medical physics.

[73]  Marco Durante,et al.  The quality of DNA double-strand breaks: A Monte Carlo simulation of the end-structure of strand breaks produced by protons and alpha particles , 1995, Radiation and environmental biophysics.

[74]  J F Ziegler,et al.  Comments on ICRU report no. 49: stopping powers and ranges for protons and alpha particles. , 1999, Radiation research.

[75]  Dudley T. Goodhead,et al.  Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region , 1993 .

[76]  Robert R. Lewis,et al.  Analysis of Low-Energy Electron Track Structure in Liquid Water , 2004, Radiation research.

[77]  C. Tung,et al.  LOCAL-PLASMA APPROXIMATION FOR ATOMIC AND SOLID EXCITATION-SPECTRA , 1985 .

[78]  Cho,et al.  Vibrationally elastic scattering cross section of water vapor by electron impact. , 1987, Physical review. A, General physics.

[79]  L. Toburen,et al.  Measurement of High-Energy Charge-Transfer Cross Sections for Incident Protons and Atomic Hydrogen in Various Gases , 1968 .

[80]  R. H. Ritchie,et al.  Electron excitation and the optical potential in electron microscopy , 1977 .

[81]  F A Cucinotta,et al.  Applications of amorphous track models in radiation biology , 1999, Radiation and environmental biophysics.

[82]  A. Brahme,et al.  Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT. , 2004, Physics in medicine and biology.

[83]  Lyndon B. Johnson,et al.  Managing Lunar and Mars Mission Radiation Risks Part I: Cancer Risks, Uncertainties, and Shielding Effectiveness , 2005 .

[84]  M. Inokuti How is radiation energy absorption different between the condensed phase and the gas phase , 1991 .

[85]  M. Bronskill,et al.  Picosecond pulse radiolysis. IV. Yield of the solvated electron at 30 picoseconds , 1973 .

[86]  J. LaVerne,et al.  Concerning plasmon excitation in liquid water. , 1993, Radiation research.

[87]  G. Badhwar,et al.  Shuttle measurements of galactic cosmic radiation let spectra , 1996 .

[88]  I. Kawrakow Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. , 2000, Medical physics.

[89]  Rudd,et al.  Cross sections for ionization of water vapor by 7-4000-keV protons. , 1985, Physical review. A, General physics.

[90]  R. Stolarski,et al.  Analytic models of electron impact excitation cross sections , 1972 .

[91]  M Scholz,et al.  The Physical and Radiobiological Basis of the Local Effect Model:A Response to the Commentary by R. Katz , 2004, Radiation research.

[92]  P. Christmas,et al.  Average energy required to produce an ion pair: ICRU Report 31, 1979, ICRU Publications, PO Box 30165, Washington, DC 20014, U.S.A. 52 pp. £5.25. , 1980 .

[93]  L. Toburen,et al.  Calculations of electronic stopping cross sections for low-energy protons in water , 2000 .

[94]  A. Akkerman,et al.  Characteristics of electron inelastic interactions in organic compounds and water over the energy range 20–10 000 eV , 1999 .

[95]  R. H. Ritchie,et al.  PHYSICAL ASPECTS OF CHARGED PARTICLE TRACK STRUCTURE , 1989 .

[96]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[97]  H. Nishimura,et al.  Elastic Scattering of Electrons from H2O Molecule , 1985 .

[98]  L. Sanche,et al.  Cross Sections for Low-Energy (1–100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice , 2003, Radiation research.

[99]  J. Ward,et al.  The complexity of DNA damage: relevance to biological consequences. , 1994, International journal of radiation biology.

[100]  J. E. Turner,et al.  Radiation Interactions and Energy Transport in the Condensed Phase , 1991 .

[101]  T. Goulet,et al.  Monte Carlo simulation of fast electron and proton tracks in liquid water -- I. physical and physicochemical aspects , 1998 .

[102]  J. K. Thomas,et al.  DIRECT OBSERVATION OF REGIONS OF HIGH ION AND RADICAL CONCENTRATION IN THE RADIOLYSIS OF WATER AND ETHANOL. , 1967 .

[103]  P. Vaz,et al.  Advanced Monte Carlo for radiation physics, particle transport simulation and applications : proceedings of the Monte Carlo 2000 Conference, Lisbon, 23-26 October 2000 , 2001 .

[104]  M. Delcourt,et al.  Ionizing radiation-liquid interactions: A comparative study of polar liquids , 1983 .

[105]  J. Jay-Gerin,et al.  A new estimate of the radical yield at early times in the radiolysis of liquid water , 2000 .

[106]  Dimitris Emfietzoglou,et al.  Modeling the energy and momentum dependent loss function of the valence shells of liquid water , 2005 .

[107]  R. Katz,et al.  Theory of RBE for heavy ion bombardment of dry enzymes and viruses. , 1967, Radiation research.

[108]  James E. Turner,et al.  Atoms, Radiation, and Radiation Protection , 1996 .

[109]  J. Simmons,et al.  Track studies in water vapor using a low-pressure cloud chamber. II. Microdosimetric measurements. , 1993, Radiation research.

[110]  D. Vroom,et al.  Measurement of energy distributions of secondary electrons ejected from water vapor by fast electrons , 1977 .

[111]  J. C. Ashley Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data , 1988 .

[112]  R. J. Carbone,et al.  Classical Calculation of Differential Cross Section for Scattering from a Coulomb Potential with Exponential Screening , 1955 .

[113]  J. H. Miller,et al.  Proton energy degradation in water vapor. , 1973, Radiation research.

[114]  F. Posny,et al.  W values for heavy particles in propane and in TE gas , 1987 .

[115]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[116]  C. Powell,et al.  Evaluation of Calculated and Measured Electron Inelastic Mean Free Paths Near Solid Surfaces , 1999 .

[117]  P O'Neill,et al.  Computational Approach for Determining the Spectrum of DNA Damage Induced by Ionizing Radiation , 2001, Radiation research.

[118]  D. Rogers Fluence to dose equivalent conversion factors calculated with EGS3 for electrons from 100 keV to 20 GeV and photons from 11 keV to 20 GeV. , 1984, Health physics.

[119]  G. Buxton Nanosecond pulse radiolysis of aqueous solutions containing proton and hydroxyl radical scavengers , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[120]  S. Klevenhagen The Computation of Dose Distribution in Electron Beam Radiotherapy, Alan E. Nahum (Ed.). Umea University, New York (1985) , 1987 .

[121]  T. Kusama,et al.  Monte Carlo simulation of physicochemical processes of liquid water radiolysis , 1997 .

[122]  A. Kuppermann,et al.  Electron impact excitation of H2O , 1973 .

[123]  J. C. Ashley Stopping power of liquid water for low-energy electrons , 1982 .

[124]  J. Lindhard,et al.  ON THE PROPERTIES OF A GAS OF CHARGED PARTICLES , 1954 .

[125]  N. Watanabe,et al.  Bethe Surface of Liquid Water Determined by Inelastic X-Ray Scattering Spectroscopy and Electron Correlation Effects , 1997 .

[126]  D. Burmistrov,et al.  “Trion” code for radiation action calculations and its application in microdosimetry and radiobiology , 1993, Radiation and environmental biophysics.

[127]  F Ballarini,et al.  Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: a quantitative analysis based on Monte Carlo simulations , 2000, Radiation and environmental biophysics.

[128]  A. Yagishita,et al.  Measurement of charge-changing cross sections in collisions of He and He+ with H2, O2, CH4, CO and CO2 , 1990 .

[129]  S. Uehara,et al.  Monte Carlo track structure code for low-energy alpha-particles in water , 2002 .

[130]  Takashi NAKAMURA,et al.  Development of General-Purpose Particle and Heavy Ion Transport Monte Carlo Code , 2002 .

[131]  M. Washio,et al.  Pulse-radiolysis study on the yield of hydrated electron at elevated temperatures , 1988 .

[132]  Hiroshi Nakashima,et al.  PHITS: A particle and heavy ion transport code system , 2006 .

[133]  Robert R. Wilson,et al.  MONTE CARLO STUDY OF SHOWER PRODUCTION , 1952 .

[134]  H. Paretzke,et al.  Simulation of DNA damage after proton and low LET irradiation. , 2002, Radiation Protection Dosimetry.

[136]  M. E. Rudd,et al.  Electron production in proton collisions with atoms and molecules: energy distributions , 1992 .

[137]  N. Rohrig,et al.  Measurements of anti W for protons, helium-4 ions, and carbon-12 ions in tissue-equivalent gas. [0. 15 to 2. 8 MeV protons, 0. 36 to 7. 8 MeV He+, and 0. 12 to 5. 6 MeV C+] , 1978 .

[138]  Leif E. Peterson,et al.  Space Radiation Cancer Risks and Uncertainties for Mars Missions , 2001, Radiation research.

[139]  R. K. Bull,et al.  Stopping powers for electrons and positrons: ICRU Report 37; 271 pp.; 24 figures; U.S. $24.00. , 1986 .

[140]  C. Kao,et al.  Optical spectra of liquid water in vacuum uv region by means of inelastic x-ray scattering spectroscopy , 1998 .

[141]  P. Burch Calculations of Energy Dissipation Characteristics in Water for Various Radiations , 1957 .

[142]  W. E. Wilson,et al.  Energy and angular distributions of electrons ejected from water vapor by 0.3–1.5 MeV protons , 1977 .

[143]  Daniel D. McCracken,et al.  The Monte Carlo Method , 1955 .

[144]  J. Kistemaker,et al.  Gross‐ and Partial‐Ionization Cross Sections for Electrons on Water Vapor in the Energy Range 0.1–20 keV , 1966 .

[145]  Rudd Me Differential cross sections for secondary electron production by proton impact. , 1988 .

[146]  Peter Jacob,et al.  Simulation of DNA Damage after Proton Irradiation , 2003, Radiation research.

[147]  M. Marshall,et al.  Advances in Cloud-Chamber Techniques and Measurements of W Value in a Tissue-Equivalent Gas , 1981 .

[148]  Zhenyu Tan,et al.  Electron stopping power and mean free path in organic compounds over the energy range of 20–10,000 eV , 2004 .

[149]  D T Goodhead,et al.  Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. , 1994, International Journal of Radiation Biology.

[150]  D. Combecher Measurement of W Values of Low-Energy Electrons in Several Gases , 1980 .

[151]  N. Djurić,et al.  H2O and D2O total ionization cross-sections by electron impact , 1988 .

[152]  F. Salvat,et al.  Monte Carlo simulation of kilovolt electron transport in solids , 1990 .

[153]  F. Cucinotta,et al.  A Model of Cell Damage in Space Flight , 1993 .

[154]  M Scholz,et al.  Tumor therapy and track structure , 1999, Radiation and environmental biophysics.

[155]  W. T. Lawrence,et al.  HZETRN: Description of a Free-Space Ion and Nucleon Transport and Shielding Computer Program , 1995 .

[156]  W.K. (Bill) Peterson,et al.  Tables of secondary-electron-production cross sections , 1972 .

[157]  G J Kutcher,et al.  A model for energy deposition in liquid water. , 1976, Radiation research.

[158]  M. Avalos-Borja,et al.  Crosslinking of recycled polyethylene by gamma and electron beam irradiation , 1998 .

[159]  J. Fernández-Varea,et al.  A comparison of inelastic electron scattering models based on delta -function representations of the Bethe surface , 1992 .

[160]  F. Cucinotta,et al.  Cell Kinetics and Track Structure , 1993 .