Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides

For pt.I see ibid., vol.ED-34, p.1008-17 (May 1987). The authors propose that the stress from two-dimensional oxide deformation affects the kinetic parameter in the Deal-Grove model (1965). In particular, the viscous stress associated with the nonuniform deformation of the oxide is identified as the fundamental force of retardation. In this model, the stress normal to the Si-SiO/sub 2/ interface reduces the surface reaction rate in both convex and concave surfaces, whereas the stress in the bulk of the oxide (compressive for concave and tensile for convex surfaces) is responsible for the thinner oxides on the concave structures. The model is described by a simplified mathematical formulation made possible by the symmetry in cylindrical structures. Comparisons with experimental data, possible applications, and limitations of the model are also discussed. >

[1]  K. Saraswat,et al.  Two-dimensional thermal oxidation of silicon—I. Experiments , 1987, IEEE Transactions on Electron Devices.

[2]  G. Ghibaudo Modelling of silicon oxidation based on stress relaxation , 1987 .

[3]  E. Irene New results on low-temperature thermal oxidation of silicon , 1987 .

[4]  W. Tiller,et al.  Stress relaxation technique for thermally grown SiO2 , 1986 .

[5]  James D. Plummer,et al.  Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime. I: Experimental results , 1985 .

[6]  H. Matsumoto,et al.  Numerical modeling of nonuniform Si thermal oxidation , 1985, IEEE Transactions on Electron Devices.

[7]  H. Tango,et al.  A deep-trenched capacitor technology for 4 mega bit dynamic RAM , 1985, 1985 International Electron Devices Meeting.

[8]  Dah-Bin Kao,et al.  Two-dimensional silicon oxidation experiments and theory , 1985, 1985 International Electron Devices Meeting.

[9]  K. Yoshikawa,et al.  Two Dimensional Effect on Suppression of Thermal Oxidation Rate , 1984 .

[10]  G. Ghibaudo,et al.  Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow , 1983 .

[11]  A. Evans,et al.  Oxidation induced stresses and some effects on the behavior of oxide films , 1983 .

[12]  J. Bravman,et al.  Transmission electron microscopy studies of the polycrystalline silicon-SiO2 interface , 1983 .

[13]  James D. Plummer,et al.  Thermal oxidation of silicon in dry oxygen , 1983 .

[14]  Daeje Chin,et al.  Two-dimensional oxidation , 1983, IEEE Transactions on Electron Devices.

[15]  R. B. Marcus,et al.  The Oxidation of Shaped Silicon Surfaces , 1982 .

[16]  T. Sheng,et al.  Polysilicon / SiO2 Interface Microtexture and Dielectric Breakdown , 1982 .

[17]  L. Wilson Numerical Simulation of Gate Oxide Thinning in MOS Devices , 1982 .

[18]  E. Irene,et al.  Residual Stress, Chemical Etch Rate, Refractive Index, and Density Measurements on SiO2 Films Prepared Using High Pressure Oxygen , 1980 .

[19]  E. P. EerNisse,et al.  Stress in thermal SiO2 during growth , 1979 .

[20]  R. B. Marcus,et al.  Gate Oxide Thinning at the Isolation Oxide Wall , 1978 .

[21]  J. A. Appels,et al.  Formation of Silicon Nitride at a Si ‐ SiO2 Interface during Local Oxidation of Silicon and during Heat‐Treatment of Oxidized Silicon in NH 3 Gas , 1976 .

[22]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[23]  E. B. Dane,et al.  The Effect of Pressure on the Viscosity of Boric Anhydride Glass , 1938 .