Computational lambda-calculus and monads

The lambda -calculus is considered a useful mathematical tool in the study of programming languages. However, if one uses beta eta -conversion to prove equivalence of programs, then a gross simplification is introduced. The author gives a calculus based on a categorical semantics for computations, which provides a correct basis for proving equivalence of programs, independent from any specific computational model.<<ETX>>

[1]  E. Moggi The partial lambda calculus , 1988 .

[2]  Peter T. Johnstone,et al.  Indexed Categories and Their Applications , 1978 .

[3]  Carolyn L. Talcott,et al.  Programming, Transforming, and Providing with Function Abstractions and Memories , 1989, ICALP.

[4]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[5]  R. Lathe Phd by thesis , 1988, Nature.

[6]  Matthias Felleisen,et al.  Reasoning with Continuations , 1986, LICS.

[7]  Alan F. Blackwell,et al.  Programming , 1973, CSC '73.

[8]  Robert L. Constable,et al.  Computational foundations of basic recursive function theory , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[9]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[10]  Andrew M. Pitts,et al.  The theory of constructions: Categorical semantics and topos-theoretic models , 1987 .

[11]  Ian A. Mason Verification of Programs That Destructively Manipulate Data , 1988, Sci. Comput. Program..

[12]  Yves Lafont The Linear Abstract Machine (Corrigenda) , 1988, Theor. Comput. Sci..

[13]  A. Kock Monads on symmetric monoidal closed categories , 1970 .

[14]  A. Kock Bilinearity and Cartesian Closed Monads. , 1971 .

[15]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[16]  A. Kock Strong functors and monoidal monads , 1972 .

[17]  Robin Milner,et al.  A Type Discipline for Program Modules , 1987, TAPSOFT, Vol.2.

[18]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[19]  Eugenio Moggi,et al.  Categories of Partial Morphisms and the lambdap - Calculus , 1985, CTCS.

[20]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[21]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[22]  Robin Milner,et al.  Edinburgh lcf: a mechanized logic of computation , 1978 .

[23]  Robert L. Constable,et al.  Partial Objects In Constructive Type Theory , 1987, Logic in Computer Science.

[24]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[25]  C.-H. Luke Ong The Lazy Lambda Calculus : an investigation into the foundations of functional programming , 1988 .