Novel Approaches to Online Process Optimization Under Uncertainty: Addressing the limitations of current industrial practice

In the face of growing competition, and increased necessity to focus on sustainability and energy efficiency, there is a clear need to optimize the day-to-day operation of many industrial processes. One strategy for online process optimization is to use model-based real-time optimization (RTO). Despite the motivation and the potential, real-time optimization is not as commonly used in practice as one would expect. This thesis takes a detailed look at the different challenges that impede practical implementation of real-time optimization and aims to address some of these challenges. In brief, this thesis presents novel algorithms and methods ranging from simple control structures, to model-free and model-based optimization and more complex scenario-based economic model predictive control. One of the fundamental limiting factors of traditional steady-state RTO is the steady-state wait time. This essentially discards transient measurements, which otherwise contains useful information. In part I of this thesis, we propose different approaches to use transient measurements for steady-state optimization, with the goal of minimizing the steady-state wait time. Moreover, different algorithms to real-time optimization that do not require the need to solve numerical optimization problems are proposed, thus alleviating many of the computational challenges which impede practical application of traditional RTO approaches. First, we propose a “hybrid” approach, where the model adaptation is done with transient measurements and dynamic models, and the optimization is performed using steady-state models. To further simplify the steady-state optimization, we then convert the hybrid RTO approach into a feedback RTO approach. Here, the transient measurements are used to estimate the steady-state gradient, which is controlled to a constant setpoint of zero using feedback controllers. The steadystate gradient is estimated using a novel method based on linearizing the nonlinear dynamic model around the current operating point. To address the cost of developing models, we demonstrate the use of classical controllers where the economic objectives are translated into control objectives. We also provide a systematic approach to switch between different active constraint regions using selectors. For the unconstrained degrees of freedom, we then propose a novel extremum seeking scheme using transient measurements for a class of Hammerstein systems, where the linear dynamics are fixed. We show that the proposed approach converges significantly faster than the classical extremum seeking scheme, and provide robust stability margins. Part I concludes by showing that the different methods work in different time scales, and by hierarchically combining the different approaches, one can handle a wider class of uncertainties.

[1]  Bjarne Grimstad,et al.  Global optimization of multiphase flow networks using spline surrogate models , 2016, Comput. Chem. Eng..

[2]  J. Hauge,et al.  The Challenge Of Operating And Maintaining 115 Subsea Wells On The Troll Field , 2005 .

[3]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[4]  A. Mesbah,et al.  Stochastic Model Predictive Control: An Overview and Perspectives for Future Research , 2016, IEEE Control Systems.

[5]  Kartik B. Ariyur,et al.  Real-Time Optimization by Extremum-Seeking Control , 2003 .

[6]  J. Maciejowski,et al.  Soft constraints and exact penalty functions in model predictive control , 2000 .

[7]  Jie Chen,et al.  Logarithmic integrals, interpolation bounds, and performance limitations in MIMO feedback systems , 2000, IEEE Trans. Autom. Control..

[8]  Sigurd Skogestad,et al.  Multistage Model Predictive Control with Online Scenario Tree Update using Recursive Bayesian Weighting , 2019, 2019 18th European Control Conference (ECC).

[9]  Sigurd Skogestad,et al.  Optimal Operation with Changing Active Constraint Regions using Classical Advanced Control , 2018 .

[10]  Ignacio E. Grossmann,et al.  Review of Mixed‐Integer Nonlinear and Generalized Disjunctive Programming Methods , 2014 .

[11]  Sebastian Engell,et al.  Robust nonlinear model predictive control of a batch bioreactor using multi-stage stochastic programming , 2013, 2013 European Control Conference (ECC).

[12]  Sigurd Skogestad,et al.  Online Process Optimization with Active Constraint Set Changes using Simple Control Structures , 2019, Industrial & Engineering Chemistry Research.

[13]  Sigurd Skogestad,et al.  Optimal measurement combinations as controlled variables , 2009 .

[14]  Bjarne Foss,et al.  Gas Lift Optimization under Uncertainty , 2017 .

[15]  Yi Cao,et al.  Self-optimizing control - A survey , 2017, Annu. Rev. Control..

[16]  Sebastian Engell,et al.  Shared resource allocation in an integrated petrochemical site by price-based coordination using quadratic approximation , 2016, 2016 European Control Conference (ECC).

[17]  Sigurd Skogestad,et al.  Data-driven Scenario Selection for Multistage Robust Model Predictive Control , 2018 .

[18]  Bjarne Foss,et al.  A Distributed Algorithm for Scenario-based Model Predictive Control using Primal Decomposition , 2018 .

[19]  Sebastian Engell,et al.  A Synergistic Approach to Robust Output Feedback Control: Tube-based Multi-stage NMPC , 2018 .

[20]  Peter D. Roberts,et al.  On an algorithm for combined system optimisation and parameter estimation , 1981, Autom..

[21]  Sigurd Skogestad,et al.  Optimal Selection of Controlled Variables , 2003 .

[22]  Xuejin Yang,et al.  Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization , 2015 .

[23]  Benjamin Karg,et al.  Efficient Representation and Approximation of Model Predictive Control Laws via Deep Learning , 2018, IEEE Transactions on Cybernetics.

[24]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[25]  José Carlos Pinto,et al.  Common vulnerabilities of RTO implementations in real chemical processes , 2013 .

[26]  K. Deergha Rao,et al.  An Approach for a Faster GPS Tracking Extended Kalman Filter , 1995 .

[27]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[28]  Eduardo Camponogara,et al.  Integrated production optimization of oil fields with pressure and routing constraints: The Urucu field , 2012, Comput. Chem. Eng..

[29]  James B. Rawlings,et al.  Optimizing Process Economic Performance Using Model Predictive Control , 2009 .

[30]  Sigurd Skogestad,et al.  Plantwide controlA review and a new design procedure ” , 2013 .

[31]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..

[32]  David Shook Best practices improve control system performance , 2006 .

[33]  Esmaeil Jahanshahi,et al.  Control of the Steady-State Gradient of an Ammonia Reactor using Transient Measurements , 2018 .

[34]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures , 1980 .

[35]  Bjarne A. Foss,et al.  Scenario Based Implicit Dual Model Predictive Control , 2015 .

[36]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[37]  Olav Slupphaug,et al.  Active feedback control of unstable wells at the brage field , 2005 .

[38]  Esmaeil Jahanshahi,et al.  Gas-lift Optimization by Controlling Marginal Gas-Oil Ratio using Transient Measurements , 2018 .

[39]  Daniel Sarabia,et al.  Improving scenario decomposition algorithms for robust nonlinear model predictive control , 2015, Comput. Chem. Eng..

[40]  Nitin Kaistha,et al.  Hill-Climbing for Plantwide Control to Economic Optimum , 2014 .

[41]  M. Xiong,et al.  Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks , 2008, PloS one.

[42]  Lorenzo Fagiano,et al.  Scenario and Adaptive Model Predictive Control of Uncertain Systems , 2015 .

[43]  Alberto Sant'anna Stender,et al.  Anti-Slug Advanced Control for Offshore Production Platforms , 2015 .

[44]  Miroslav Krstic,et al.  Stability of extremum seeking feedback for general nonlinear dynamic systems , 2000, Autom..

[45]  B. Erik Ydstie,et al.  Adaptive extremum control using approximate process models , 1989 .

[46]  Miroslav Krstic,et al.  An adaptive algorithm for control of combustion instability , 2004, Autom..

[47]  Gade Pandu Rangaiah,et al.  Plantwide control : recent developments and applications , 2012 .

[48]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[49]  Sigurd Skogestad,et al.  Convex formulations for optimal selection of controlled variables and measurements using Mixed Integer Quadratic Programming , 2012 .

[50]  Chris Manzie,et al.  Fast extremum seeking on Hammerstein plants: A model-based approach , 2015, Autom..

[51]  Sigurd Skogestad,et al.  A Primal decomposition algorithm for distributed multistage scenario model predictive control , 2019, Journal of Process Control.

[52]  Milos S. Stankovic,et al.  Lie bracket approximation of extremum seeking systems , 2011, Autom..

[53]  J. Doyle Synthesis of robust controllers and filters , 1983, The 22nd IEEE Conference on Decision and Control.

[54]  Babu Joseph,et al.  On-line optimization using a two-phase approach: an application study , 1987 .

[55]  Christopher J Rawlings General Purpose Software , 1986 .

[56]  Giuseppe Carlo Calafiore,et al.  Robust Model Predictive Control via Scenario Optimization , 2012, IEEE Transactions on Automatic Control.

[57]  S.F. Graebe,et al.  Dynamic transfer among alternative controllers and its relation to antiwindup controller design , 1996, IEEE Trans. Control. Syst. Technol..

[58]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[59]  Jin Soo Lee,et al.  Extremum seeking control for discrete-time systems , 2002, IEEE Trans. Autom. Control..

[60]  D. Q. Mayne,et al.  Robust and Stochastic MPC: Are We Going In The Right Direction? , 2015 .

[61]  Sigurd Skogestad,et al.  Optimal controlled variables for polynomial systems , 2012 .

[62]  Vyacheslav Kungurtsev,et al.  Sensitivity-Based Economic NMPC with a Path-Following Approach , 2017 .

[63]  Damien Picard,et al.  Approximate model predictive building control via machine learning , 2018 .

[64]  Barry Lennox,et al.  Model predictive control monitoring using multivariate statistics , 2009 .

[65]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[66]  L. Biegler,et al.  Fast economic model predictive control based on NLP-sensitivities , 2014 .

[67]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[68]  Dominique Bonvin,et al.  Comparison of Six Implicit Real-Time Optimization Schemes , 2012 .

[69]  Wolfgang Marquardt,et al.  Fast NMPC schemes for regulatory and economic NMPC – A review ☆ , 2016 .

[70]  Y. T. Li,et al.  Principles of optimalizing control systems and an application to the internal combusion engine , 1951 .

[71]  R. R. Rhinehart,et al.  An efficient method for on-line identification of steady state , 1995 .

[72]  Sigurd Skogestad,et al.  Optimal operation of energy storage in buildings: Use of the hot water system , 2016 .

[73]  Sigurd Skogestad,et al.  Real-time Optimal Resource Allocation in an Industrial Symbiotic Network using Transient Measurements* , 2020, 2020 American Control Conference (ACC).

[74]  Tiago Roux Oliveira,et al.  Fast extremum seeking for a class of non Hammerstein-Wienner systems , 2017, 2017 American Control Conference (ACC).

[75]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[76]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[77]  Hans Bock,et al.  Quadrature-based scenario tree generation for Nonlinear Model Predictive Control , 2014 .

[78]  Esmaeil Jahanshahi,et al.  Feedback Real-Time Optimization Strategy Using a Novel Steady-state Gradient Estimate and Transient Measurements , 2018, Industrial & Engineering Chemistry Research.

[79]  Eduardo Camponogara,et al.  Robust formulations for production optimization of satellite oil wells , 2017 .

[80]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[81]  Radoslav Paulen,et al.  Dual robust nonlinear model predictive control: A multi-stage approach , 2018, Journal of Process Control.

[82]  Jason L. Speyer,et al.  Peak-seeking control with application to formation flight , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[83]  Bjarne Foss,et al.  Steady-state real-time optimization using transient measurements , 2018, Comput. Chem. Eng..

[84]  Vyacheslav Kungurtsev,et al.  A Predictor-Corrector Path-Following Algorithm for Dual-Degenerate Parametric Optimization Problems , 2017, SIAM J. Optim..

[85]  Alexey Pavlov,et al.  Modelling and model predictive control of oil wells with Electric Submersible Pumps , 2014, 2014 IEEE Conference on Control Applications (CCA).

[86]  Naresh N. Nandola,et al.  A multiple model approach for predictive control of nonlinear hybrid systems , 2008 .

[87]  Sigurd Skogestad,et al.  Economic NMPC for heat-integrated chemical reactors , 2017, 2017 21st International Conference on Process Control (PC).

[88]  E. P. Kanu,et al.  Economic Approach to Oil Production and Gas Allocation in Continuous Gas Lift (includes associated papers 10858 and 10865 ) , 1981 .

[89]  Sigurd Skogestad,et al.  NULL SPACE METHOD FOR SELECTING OPTIMAL MEASUREMENT COMBINATIONS AS CONTROLLED VARIABLES , 2007 .

[90]  Josef Kallrath,et al.  Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential and Future Perspectives , 2000 .

[91]  C. S. Kabir,et al.  Real Time Optimization: Classification and Assessment , 2004 .

[92]  Sigurd Skogestad,et al.  A Dynamic Extremum Seeking Scheme Applied to Gas Lift Optimization , 2019 .

[93]  Vyacheslav Kungurtsev,et al.  Sequential quadratic programming methods for parametric nonlinear optimization , 2014, Comput. Optim. Appl..

[94]  Joel Andersson,et al.  A General-Purpose Software Framework for Dynamic Optimization (Een algemene softwareomgeving voor dynamische optimalisatie) , 2013 .

[95]  Martin Guay,et al.  Robust and Adaptive Model Predictive Control of Nonlinear Systems , 2015 .

[96]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[97]  Radu Serban,et al.  User Documentation for CVODES: An ODE Solver with Sensitivity Analysis Capabilities , 2002 .

[98]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[99]  Rolf Isermann,et al.  Adaptive on-line steady-state optimization of slow dynamic processes , 1978, Autom..

[100]  Andrzej Ruszczynski,et al.  Parallel decomposition of multistage stochastic programming problems , 1993, Math. Program..

[101]  Dominique Bonvin,et al.  Process optimization via constraints adaptation , 2008 .

[102]  Bengt Andersson,et al.  Mathematical Modeling in Chemical Engineering , 2014 .

[103]  P. Varaiya,et al.  Control and coordination in hierarchical systems , 1982, Proceedings of the IEEE.

[104]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[105]  Andrew G. Alleyne,et al.  Combining self-optimizing control and extremum seeking for online optimization with application to Vapor Compression cycles , 2016, 2016 American Control Conference (ACC).

[106]  Sigurd Skogestad,et al.  Changing between Active Constraint Regions for Optimal Operation: Classical Advanced Control versus Model Predictive Control , 2018 .

[107]  Wolfgang Marquardt,et al.  Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time optimization , 2009 .

[108]  Jung-Su Kim Recent advances in adaptive MPC , 2010, ICCAS 2010.

[109]  Yoshikazu Sawaragi,et al.  Dynamic version of steady state optimizing control of a distillation column by trial method , 1971 .

[110]  Wolfgang Marquardt,et al.  Towards integrated dynamic real-time optimization and control of industrial processes , 2003 .

[111]  Ümit Özgüner,et al.  Extremum seeking with sliding mode gradient estimation and asymptotic regulation for a class of nonlinear systems , 2011, Autom..

[112]  Sigurd Skogestad,et al.  On combining self-optimizing control and extremum-seeking control – Applied to an ammonia reactor case study , 2019, Journal of Process Control.

[113]  Radoslav Paulen,et al.  Robust Nonlinear Model Predictive Control with Reduction of Uncertainty Via Robust Optimal Experiment Design , 2014 .

[114]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[115]  Martin Guay,et al.  Performance Improvement of Extremum Seeking Control using Recursive Least Square Estimation with Forgetting Factor , 2016 .

[116]  Bjarne Grimstad,et al.  Spline Fluid Models for Optimization , 2016 .

[117]  Lorenz T. Biegler,et al.  On-line implementation of nonlinear MPC: an experimental case study , 2000 .

[118]  T. Lumley,et al.  PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS , 2004, Statistical Methods for Biomedical Research.

[119]  S. Skogestad,et al.  Analysis of instability in an industrial ammonia reactor , 1998 .

[120]  Stein W. Wallace,et al.  Approximate scenario solutions in the progressive hedging algorithm , 1991, Ann. Oper. Res..

[121]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[122]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[123]  Malcolm Woodman,et al.  Model Based Operational Support - Adding Assurance to Operational Decision Making , 2010 .

[124]  Lorenz T. Biegler,et al.  Tracking the necessary conditions of optimality with changing set of active constraints using a barrier-penalty function , 2008, Comput. Chem. Eng..

[125]  Lorenz T. Biegler,et al.  Efficient Solution of Dynamic Optimization and NMPC Problems , 2000 .

[126]  Sebastian Engell,et al.  Non-conservative robust Nonlinear Model Predictive Control via scenario decomposition , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[127]  Christopher Henry Urbanczyk,et al.  Optimization of Well Rates Under Gas Coning Conditions , 1994 .

[128]  Magnus G. Jacobsen,et al.  Active Constraint Regions for Optimal Operation of Distillation Columns , 2012 .

[129]  M Maarten Steinbuch,et al.  Extremum seeking control with adaptive disturbance feedforward , 2014 .

[130]  Sigurd Skogestad,et al.  Optimal operation of oil and gas production using simple feedback control structures , 2019, Control Engineering Practice.

[131]  Sigurd Skogestad,et al.  Self-optimizing control: the missing link between steady-state optimization and control , 2000 .

[132]  Esmaeil Jahanshahi,et al.  Control structure design for stabilizing unstable gas-lift oil wells , 2012 .

[133]  Miroslav Krstic,et al.  Multivariable Newton-based extremum seeking , 2011, IEEE Conference on Decision and Control and European Control Conference.

[134]  Denis Dochain,et al.  Extremum seeking control and its application to process and reaction systems: A survey , 2011, Math. Comput. Simul..

[135]  Bjarne Foss,et al.  A two-layer structure for stabilization and optimization of an oil gathering network , 2016 .

[136]  Roshan Sharma,et al.  On Generalized Reduced Gradient method with multi-start and self-optimizing control structure for gas lift allocation optimization , 2013 .

[137]  Zhihuan Song,et al.  Approximating Necessary Conditions of Optimality as Controlled Variables , 2013 .

[138]  Sigurd Skogestad,et al.  The SIMC Method for Smooth PID Controller Tuning , 2012 .

[139]  A. Wouwer,et al.  Extremum seeking based on a Hammerstein-Wiener representation , 2018 .

[140]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[141]  Esmaeil Jahanshahi,et al.  Simplified Dynamic Models for Control of Riser Slugging in Offshore Oil Production , 2014 .

[142]  Andrzej Ruszczyski An augmented Lagrangian decomposition method for block diagonal linear programming problems , 1989 .

[143]  Sigurd Skogestad,et al.  Plantwide control: the search for the self-optimizing control structure , 2000 .

[144]  Lorenzo Fagiano,et al.  The scenario approach for Stochastic Model Predictive Control with bounds on closed-loop constraint violations , 2013, Autom..

[145]  Thomas E. Marlin,et al.  Model adequacy requirements for optimizing plant operations , 1994 .

[146]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[147]  Bjarne A. Foss,et al.  Oil production optimization - A piecewise linear model, solved with two decomposition strategies , 2010, Comput. Chem. Eng..

[148]  Dominique Bonvin,et al.  Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty , 2005 .

[149]  Vidar Alstad,et al.  Studies on selection of controlled variables , 2005 .

[150]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[151]  Sigurd Skogestad,et al.  Simple Rules for Economic Plantwide Control , 2015 .

[152]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[153]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[154]  J. Maciejowski,et al.  Robustly stable feedback min-max model predictive control , 2003, Proceedings of the 2003 American Control Conference, 2003..

[155]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[156]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .

[157]  Mark Haring,et al.  Practical extremum-seeking control for gas-lifted oil production , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[158]  Miroslav Krstic,et al.  Performance improvement and limitations in extremum seeking control , 2000 .

[159]  Maria Prandini,et al.  The scenario approach for systems and control design , 2009, Annu. Rev. Control..

[160]  Michael Nikolaou,et al.  RTO: An overview and assessment of current practice , 2011 .

[161]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[162]  Adriaen Verheyleweghen,et al.  Framework for Combined Diagnostics, Prognostics and Optimal Operation of a Subsea Gas Compression System , 2017 .

[163]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.

[164]  Eric C. Kerrigan,et al.  Computer architectures to close the loop in real-time optimization , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[165]  D. Seborg,et al.  Predictive Controller Design by Principal Components Analysis , 1988, 1985 American Control Conference.

[166]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[167]  John Dahl,et al.  An improved dual Newton strategy for scenario-tree MPC , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[168]  Helen Durand,et al.  A tutorial review of economic model predictive control methods , 2014 .

[169]  F. G. Greg Shinskey,et al.  Process Control Systems: Application, Design and Tuning , 1990 .

[170]  Sigurd Skogestad,et al.  Economic Plantwide Control , 2012 .

[171]  Florent Di Meglio,et al.  Stabilization of slugging in oil production facilities with or without upstream pressure sensors , 2012 .

[172]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[173]  Bjarne Foss,et al.  Improving Scenario Decomposition for Multistage MPC Using a Sensitivity-Based Path-Following Algorithm , 2018, IEEE Control Systems Letters.

[174]  John D. Hedengren,et al.  Overview of estimation methods for industrial dynamic systems , 2017 .

[175]  Manfred Morari,et al.  Optimal operation of integrated processing systems. Part I: Open‐loop on‐line optimizing control , 1981 .

[176]  B. Wayne Bequette,et al.  Extension of dynamic matrix control to multiple models , 2003, Comput. Chem. Eng..

[177]  Sebastian Engell,et al.  Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty , 2013 .

[178]  Sigurd Skogestad,et al.  NCO tracking and self-optimizing control in the context of real-time optimization , 2011 .

[179]  Bjarne A. Foss,et al.  Production Optimization under Uncertainty - Applied to Petroleum Production , 2015 .

[180]  Maarten Steinbuch,et al.  Extremum seeking control with data-based disturbance feedforward , 2014, 2014 American Control Conference.

[181]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[182]  Dominique Bonvin,et al.  Comparison of Gradient Estimation Methods for Real-time Optimization , 2011 .

[183]  Nathan van de Wouw,et al.  A dither-free extremum-seeking control approach using 1st-order least-squares fits for gradient estimation , 2014, 53rd IEEE Conference on Decision and Control.

[184]  David W. Bacon,et al.  Empirical strategies for open‐loop on‐line optimization , 1989 .

[185]  Rainer Manuel Schaich,et al.  Robust model predictive control , 2017 .

[186]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[187]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[188]  Wenfu Wu,et al.  Process control based on principal component analysis for maize drying , 2006 .

[189]  Sigurd Skogestad,et al.  Active Constraint Regions for Optimal Operation of Chemical Processes , 2011 .

[190]  Randi Moe,et al.  The dynamic two-fluid model OLGA; Theory and application , 1991 .

[191]  Eric C. Kerrigan,et al.  Noise covariance identification for time-varying and nonlinear systems , 2017, Int. J. Control.

[192]  Efstratios N. Pistikopoulos,et al.  Perspectives in Multiparametric Programming and Explicit Model Predictive Control , 2009 .

[193]  Fabio dos Santos Liporace,et al.  Challenges and problems with advanced control and optimization technologies , 2009 .

[194]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[195]  Tariq Samad,et al.  A Survey on Industry Impact and Challenges Thereof [Technical Activities] , 2017, IEEE Control Systems.

[196]  Daniel Kuhn,et al.  Distributionally Robust Control of Constrained Stochastic Systems , 2016, IEEE Transactions on Automatic Control.

[197]  Bjarne Grimstad,et al.  Petroleum production optimization - A static or dynamic problem? , 2017, Comput. Chem. Eng..

[198]  Sigurd Skogestad,et al.  Control structure design for complete chemical plants , 2004, Comput. Chem. Eng..

[199]  J. M. Douglas,et al.  The interface between design and control. 3. Selecting a set of controlled variables , 1988 .

[200]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty , 2003, Comput. Chem. Eng..

[201]  Alberto Bemporad,et al.  Scenario-based model predictive control of stochastic constrained linear systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[202]  Dale E. Seborg,et al.  Model predictive controller monitoring based on pattern classification and PCA , 2003, Proceedings of the 2003 American Control Conference, 2003..

[203]  Tankut Acarman,et al.  Stability and performance improvement of extremum seeking control with sliding mode , 2003 .

[204]  Stephen P. Boyd,et al.  Notes on Decomposition Methods , 2008 .

[205]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[206]  Dinesh Krishnamoorthy,et al.  Modelling and Robustness Analysis of Model Predictive Control for Electrical Submersible Pump Lifted Heavy Oil Wells , 2016 .

[207]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[208]  Michael A. Saunders,et al.  A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .

[209]  Qin Li,et al.  Robust Extremum Seeking Control with application to Gas Lifted Oil Wells , 2016 .

[210]  George Stephanopoulos,et al.  Studies in the synthesis of control structures for chemical processes: Part IV. Design of steady‐state optimizing control structures for chemical process units , 1980 .

[211]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[212]  Sigurd Skogestad,et al.  An industrial and academic perspective on plantwide control , 2011, Annu. Rev. Control..

[213]  Elling W. Jacobsen,et al.  Greedy Extremum Seeking Control with Applications to Biochemical Processes , 2016 .

[214]  R. Bhushan Gopaluni,et al.  Model Predictive Control in Industry: Challenges and Opportunities , 2015 .

[215]  R. Findeisen,et al.  Scenario-based Model Predictive Control: Recursive Feasibility and Stability , 2015 .