Phylogenetic and Morphological Characteristics Reveal Cryptic Speciation in Stingless Bee, Tetragonula laeviceps s.l. Smith 1857 (Hymenoptera; Meliponinae)

Simple Summary The status of DNA barcoding in the cryptic species of stingless bees from Borneo, Tetragonula laeviceps sensu lato (s.l.) (Smith 1857), is poorly known. The T. laeviceps s.l. samples used in this study, which contain worker bee individuals grouped according to morphological characteristics and morphometric variations, could potentially have a similar grouping of COI haplotypes, but this has not yet been investigated. In this study, we investigate whether individuals of T. laeviceps s.l. worker bees grouped according to the same or nearly the same morphological traits show similar COI haplotype cluster groupings. The specimens were first classified according to the most obvious morphological characteristics, i.e., hind tibia color, hind basitarsus color and body size and grouping was based on morphological characteristics important for distinguishing the four groups within T. laeviceps s.l. The most distinctive features of the morphological and morphometric characteristics measured by PCA and LDA biplots that distinguished Group 1 from the other groups were the blackish-brown antennae scape (ASC) and the black (TC). Group 2 had a yellowish-brown ASC and a dark TC, while Group 3 had a dark brown ASC; a black TC; and the largest TL, FWW, and FWL. As for phylogenetic relationships, 12 out of 36 haplotypes showed clear separation with good bootstrap values (97–100%). The remaining haplotypes did not show clear differentiation between subclades that belonged together, regardless of their morphology and morphometric characteristics. Thus, the combination of DNA barcoding for species identification and phylogenetic analysis, as well as traditional methods based on morphological grouping by body size and body color, can be reliably used to determine intraspecific variations, such as the possible occurrence of subspecies within T. laeviceps s.l. Abstract Tetragonula laeviceps sensu lato (s.l.) Smith 1857 has the most complicated nomenclatural history among the Tetragonula genera. The objective of this study was to investigate whether T. laeviceps s.l. individuals with worker bees are grouped in the same or nearly the same morphological characteristics and have similar COI haplotype cluster groups. A total of 147 worker bees of T. laeviceps s.l. were collected from six sampling sites in Sabah (RDC, Tuaran, Kota Marudu, Putatan, Kinarut and Faculty of Sustainable Agriculture (FSA)), but only 36 were selected for further studies. These specimens were first classified according to the most obvious morphological characteristics, i.e., hind tibia color, hind basitarsus color and body size. Group identification was based on morphological characteristics important for distinguishing the four groups within T. laeviceps s.l. The four groups of T. laeviceps s.l. had significantly different body trait measurements for the TL (total length), HW (head width), HL (head length), CEL (compound eye length), CEW (compound eye width), FWLT (forewing length, including tegula), FWW (forewing width), FWL (forewing length), ML (mesoscutum length), MW (mesoscutum width), SW (mesoscutellum width), SL (mesoscutellum length), HTL = (hind tibia length), HTW (hind tibia width), HBL (hind basitarsus length) and HBW (hind basitarsus width) (p < 0.001). Body color included HC (head color), CC (clypeus color), ASC (antennae scape color), CFPP (Clypeus and frons plumose pubescence), HTC (hind tibia color), BSC (basitarsus color), SP (leg setae pubescence), SP (Thorax mesoscutellum pubescence), SPL (thorax mesoscutellum pubescence length) and TC (thorax color) (p < 0.05). The most distinctive features of the morphological and morphometric characteristics measured by PCA and LDA biplot that distinguish Group 1 (TL6-1, TL6-2 and TL6-3) from the other groups were the yellowish-brown ASC and the dark brown TC. Group 2 (haplotypes TL2-1, TL2-2 and TL2-3 and TL4-1, TL4-2 and TL4-3) had a dark brown ASC and a black TC, while Group 3 (haplotypes TL11-1, TL11-2 and TL11-3) had a blackish-brown ASC, a black TC and the largest TL, FWW and FWL. As for phylogenetic relationships, 12 out of 36 haplotypes showed clear separation with good bootstrap values (97–100%). The rest of the haplotypes did not show clear differentiation between subclades that belonged together, regardless of their morphology and morphometric characteristics. This suggests that the combination of DNA barcoding for species identification and phylogenetic analysis, as well as traditional methods based on morphological grouping by body size and body color, can be reliably used to determine intraspecific variations within T. laeviceps s.l.

[1]  Hiroyuki Tanaka,et al.  New Mitochondrial CO1 Haplotypes and Genetic Diversity in the Honeybee Apis Koschevnikovi of The Crocker Range Park, Sabah, Malaysia , 2023, Journal of Tropical Biology &amp; Conservation (JTBC).

[2]  R. Chaplin-Kramer,et al.  Characterizing the Morphology of Costa Rican Stingless Bees to Parameterize the InVEST Crop Pollination Model , 2022, bioRxiv.

[3]  B. Emerson,et al.  Dispersal ability and its consequences for population genetic differentiation and diversification , 2022, Proceedings of the Royal Society B.

[4]  R. Soesilohadi,et al.  Stingless bees from meliponiculture in South Kalimantan, Indonesia , 2022, Biodiversitas Journal of Biological Diversity.

[5]  A. Schwabe,et al.  Morphological and genetic data suggest a complex pattern of inter-island colonisation and differentiation for mining bees (Hymenoptera: Anthophila: Andrena) on the Macaronesian Islands , 2021, Organisms Diversity & Evolution.

[6]  C. Bouget,et al.  A DNA barcode-based survey of wild urban bees in the Loire Valley, France , 2021, Scientific Reports.

[7]  B. Emerson,et al.  Flightlessness in insects enhances diversification and determines assemblage structure across whole communities , 2021, Proceedings of the Royal Society B.

[8]  R. Raffiudin,et al.  Stingless bees (Hymenoptera: Apidae) in South and West Sulawesi, Indonesia: morphology, nest structure, and molecular characteristics , 2021 .

[9]  M. Trianto,et al.  Tetragonula laeviceps (Hymenoptera: Apidae: Meliponini): Morphology, Morphometric, and Nest Structure , 2020, BIOEDUSCIENCE.

[10]  Suprianto Suprianto,et al.  Karakter Morfologi dan Analisis Daerah Conserved Gen Elongation Factor 1? (EF1?) pada Lepidotrigona terminata , 2020 .

[11]  M. Trianto,et al.  Morphological characteristics and morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia , 2020, Biodiversitas Journal of Biological Diversity.

[12]  J. Gansau,et al.  Potential DNA Barcoding of Local Stingless Honeybee (Tantadan) From Kiulu, Sabah using 28S Ribosomal DNA , 2019, Journal of Physics: Conference Series.

[13]  B. Y. Christy,et al.  Phylogenetic Analysis of Tetragonula Minangkabau and Other Species Using Cytochrome B Gene , 2019, Journal of Apicultural Science.

[14]  S. Morand,et al.  Geometric morphometrics of the scutum for differentiation of trombiculid mites within the genus Walchia (Acariformes: Prostigmata: Trombiculidae), a probable vector of scrub typhus. , 2019, Ticks and tick-borne diseases.

[15]  Mohd Razif Mamat,et al.  Taxonomic study on selected species of stingless bee (Hymenoptera: Apidae: Meliponini) in Peninsular Malaysia. , 2018 .

[16]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[17]  D. Masiga,et al.  Compounds extracted from heads of African stingless bees (Hypotrigona species) as a prospective taxonomic tool , 2018, Chemoecology.

[18]  Jaspal Singh,et al.  Stingless Bee, Tetragonula iridipennis Smith, 1854 (Hymenoptera: Apidae: Meliponini): Molecular and Morphological Characterization , 2018, Proceedings of the National Academy of Sciences, India Section B: Biological Sciences.

[19]  M. J. Ferreira-Caliman,et al.  Morphological, chemical, and molecular analyses differentiate populations of the subterranean nesting stingless bee Mourella caerulea (Apidae: Meliponini) , 2018, Apidologie.

[20]  Juan C. Sánchez-DelBarrio,et al.  DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. , 2017, Molecular biology and evolution.

[21]  K. Vijayakumar,et al.  Morphometry Analysis of Stingless Bee Tetragonula iridipennis Smith (1854) , 2017 .

[22]  Jennifer M. Heron,et al.  Contribution of DNA barcoding to the study of the bees (Hymenoptera: Apoidea) of Canada: progress to date , 2017, The Canadian Entomologist.

[23]  D. Masiga,et al.  Identification of stingless bees (Hymenoptera: Apidae) in Kenya using morphometrics and DNA barcoding , 2017 .

[24]  N. Suriawanto,et al.  Nesting sites characteristics of stingless bees (Hymenoptera: Apidae) in Central Sulawesi, Indonesia , 2017 .

[25]  H. K. Patel,et al.  Morphometric Variation in Workers of Stingless Bees Tetragonula laeviceps Smith in South Gujarat , 2016 .

[26]  U. Dukku Evaluation of Morphometric Characters of Honeybee (Apis mellifera L.) Populations in the Lake Chad Basin in Central Africa , 2016 .

[27]  Carolina G. Santos,et al.  Insights into the dynamics of hind leg development in honey bee (Apis mellifera L.) queen and worker larvae - A morphology/differential gene expression analysis , 2015, Genetics and molecular biology.

[28]  P. Hebert,et al.  DNA barcoding largely supports 250 years of classical taxonomy: identifications for Central European bees (Hymenoptera, Apoidea partim) , 2015, Molecular ecology resources.

[29]  A. Cruaud,et al.  Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae) – an integrative approach , 2014, Systematic entomology.

[30]  Rafe M. Brown,et al.  THE CHALLENGE OF SPECIES DELIMITATION AT THE EXTREMES: DIVERSIFICATION WITHOUT MORPHOLOGICAL CHANGE IN PHILIPPINE SUN SKINKS , 2013, Evolution; international journal of organic evolution.

[31]  M. C. Arias,et al.  Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini‐barcode , 2013, Molecular ecology resources.

[32]  Novita Novita,et al.  ANALISIS MORFOMETRIK LEBAH MADU PEKERJA Apis cerana BUDIDAYA PADA DUA KETINGGIAN TEMPAT YANG BERBEDA , 2013 .

[33]  J. Dujardin,et al.  Phenetic and genetic structure of tsetse fly populations (Glossina palpalis palpalis) in southern Ivory Coast , 2012, Parasites & Vectors.

[34]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[35]  Z. Simões,et al.  Hox Gene Expression Leads to Differential Hind Leg Development between Honeybee Castes , 2012, PloS one.

[36]  R. Ayala,et al.  Morphometric and genetic analyses differentiate Mesoamerican populations of the endangered stingless bee Melipona beecheii (Hymenoptera: Meliponidae) and support their conservation as two separate units , 2012, Journal of Insect Conservation.

[37]  C. Leuenberger,et al.  Analysis of Ratios in Multivariate Morphometry , 2011, Systematic biology.

[38]  Tiago Mauricio Francoy,et al.  Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini) , 2011, Apidologie.

[39]  R. Paxton,et al.  Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini) , 2011, Insectes Sociaux.

[40]  H. Koch Combining Morphology and DNA Barcoding Resolves the Taxonomy of Western Malagasy Liotrigona Moure, 1961 (Hymenoptera: Apidae: Meliponini) , 2010 .

[41]  H. Batalha‐Filho,et al.  Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae: incongruence between morphology and mitochondrial DNA , 2010, Apidologie.

[42]  C. Michener,et al.  The Identity and Neotype of Trigona laeviceps Smith (Hymenoptera: Apidae) , 2010 .

[43]  G. Moretto,et al.  Mitochondrial discrimination of stingless bees Tetragonisca angustula (Apidae: Meliponini) from Santa Catarina state, Brazil , 2010, Apidologie.

[44]  N. Pierce,et al.  Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae) , 2010 .

[45]  J. J. G. Quezada-Euán,et al.  Morphometric and genetic differentiation in isolated populations of the endangered Mesoamerican stingless bee Melipona yucatanica (Hymenoptera: Apoidea) suggest the existence of a two species complex , 2010, Conservation Genetics.

[46]  S. Cameron,et al.  Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal , 2009 .

[47]  B. Oldroyd,et al.  A scientific note on a genetically-determined color morph of the dwarf honey bee, Apis andreniformis , 2009, Apidologie.

[48]  E. Abouheif,et al.  Evolution of a Novel Appendage Ground Plan in Water Striders Is Driven by Changes in the Hox Gene Ultrabithorax , 2009, PLoS genetics.

[49]  R. Hanner,et al.  DNA barcoding and the mediocrity of morphology , 2009, Molecular ecology resources.

[50]  C. Rasmussen Catalog of the Indo-Malayan/Australasian stingless bees (Hymenoptera: Apidae: Meliponini) , 2008 .

[51]  E. Morgan,et al.  Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini) , 2008, Insectes Sociaux.

[52]  Sean B. Carroll,et al.  The Evolution of Gene Regulation Underlies a Morphological Difference between Two Drosophila Sister Species , 2008, Cell.

[53]  A. Popadic,et al.  Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs , 2007, PloS one.

[54]  Sarah S. Greenleaf,et al.  Bee foraging ranges and their relationship to body size , 2007, Oecologia.

[55]  B. Oldroyd,et al.  Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini) , 2007, Apidologie.

[56]  F. Köhler From DNA taxonomy to barcoding – how a vague idea evolved into a biosystematic tool , 2007 .

[57]  D. Roubik Stingless bee nesting biology , 2006 .

[58]  E. Contel,et al.  Geographic variation in Tetragonisca angustula (Hymenoptera, Apidae, Meliponinae) , 2005 .

[59]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  I. Izhaki,et al.  Within population variation and interrelationships between morphology, nutritional content, and secondary compounds of Rhamnus alaternus fruits. , 2002, The New phytologist.

[61]  M. Gardner,et al.  When rare species become endangered: cryptic speciation in myrmecophilous hoverflies , 2002 .

[62]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[63]  M. Averof Arthropod evolution: Same Hox genes, different body plans , 1997, Current Biology.

[64]  Tamiji Inoue,et al.  Stingless Bees of the Genus Trigona (Subgenus Trigonella) with Notes on the Reduction of Spatha in Male Genitalia of the Subgenus Tetragonula (Hymenoptera, Apidae) , 1987 .

[65]  Professor Dr. Friedrich Ruttner Biogeography and Taxonomy of Honeybees , 1987, Springer Berlin Heidelberg.

[66]  Stanislaus Aditya Agung Morfologi Lebah Pekerja Tetragonula laeviceps Smith (Apidae: Melliponinae). , 2017 .

[67]  Nelky Suriawanto Keanekaragaman Dan Tempat Bersarang Lebah Tak Bersengat (Hymenoptera: Apidae) Di Sulawesi Tengah. , 2016 .

[68]  B. Oldroyd,et al.  Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi , 2013, Apidologie.

[69]  C. Eardley,et al.  Taxonomy as a Tool for Conservation of African Stingless Bees and Their Honey , 2013 .

[70]  C. Ruiz,et al.  Barcoding stingless bees: genetic diversity of the economically important genus Scaptotrigona in Mesoamerica , 2012, Apidologie.

[71]  R. Machida,et al.  Techniques in embryological studies of mayflies (Insecta: Ephemeroptera) , 2003 .

[72]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[73]  D. Solihin,et al.  Keragaman Morfologi Lebah Apis cerana (F.)(Hymenoptera: Apidae) di Jawa Barat , 1999 .

[74]  A. Dollin,et al.  Australian Stingless Bees of the Genus Trigona (Hymenoptera:Apidae) , 1997 .

[75]  P. S. White,et al.  Mitochondrial DNA isolation. , 1992 .

[76]  D. Roubik,et al.  Stingless bees of central Sumatra. , 1990 .

[77]  坂上 昭一 Tetragonula stingless bees of the continental Asia and Sri Lanka (Hymenoptera, Apidae) , 1978 .

[78]  T. Cockerell Descriptions and records of bees, lxxi , 1909 .