A maximal predictability portfolio using absolute deviation reformulation

This paper shows that a large-scale maximal predictability portfolio (MPP) optimization problem can be solved within a practical amount of computational time using absolute deviation instead of squared deviation in the definition of the coefficient of determination. Also, we will show that MPP portfolio outperforms the mean-absolute deviation portfolio using real asset data in Tokyo Stock Exchange.

[1]  Hiroshi Konno,et al.  Minimization of the Ratio of Functions Defined as Sums of the Absolute Values , 2007 .

[2]  A. Lo,et al.  MAXIMIZING PREDICTABILITY IN THE STOCK AND BOND MARKETS , 1995, Macroeconomic Dynamics.

[3]  Le Thi Hoai An,et al.  Decomposition branch and bound method for globally solving linearly constrained indefinite quadratic minimization problems , 1995, Oper. Res. Lett..

[4]  H. Konno,et al.  A MAXIMAL PREDICTABILITY PORTFOLIO MODEL: ALGORITHM AND PERFORMANCE EVALUATION , 2007 .

[5]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[6]  Panos M. Pardalos,et al.  Financial Engineering, E-commerce and Supply Chain , 2010 .

[7]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[8]  Panos M. Pardalos,et al.  Global optimization of fractional programs , 1991, J. Glob. Optim..

[9]  Hiroshi Konno,et al.  Multi-step methods for choosing the best set of variables in regression analysis , 2010, Comput. Optim. Appl..

[10]  Hiroshi Konno,et al.  Choosing the best set of variables in regression analysis using integer programming , 2009, J. Glob. Optim..

[11]  H. Konno,et al.  An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs , 2007 .

[12]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[13]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[14]  Hiroshi Konno,et al.  Maximization of the Ratio of Two Convex Quadratic Functions over a Polytope , 2001, Comput. Optim. Appl..