Monte Carlo analysis of a Schottky diode with an automatic space-variable charge algorithm

An efficient one-dimensional ensemble Monte Carlo simulator that improves the study of carrier transport by including a space-variable charge algorithm has been developed. The algorithm is automatically implemented in regions with remarkable concentration gradients. In this way is possible to study devices in which the carrier concentration varies by several orders of magnitude along the device and/or when we are interested in the population of states rarely occupied by the carriers (tails of distribution functions, hot electrons, etc) without excessive CPU requirements. In the present work this technique is used to study a Schottky barrier diode over a wide range of forward bias (80 - 800 mV). In particular, the exponential behaviour of the current - voltage characteristic, the agreement of this with the experimental results, the distribution function and the recombination velocity of carriers close to the metal - semiconductor interface confirm the validity of the implemented algorithm.

[1]  D. Scharfetter Minority carrier injection and charge storage in epitaxial Schottky barrier diodes , 1965 .

[2]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[3]  C. R. Crowell,et al.  Current transport in metal-semiconductor barriers , 1966 .

[4]  E. H. Snow,et al.  Surface Effects on Metal-Silicon Contacts , 1968 .

[5]  Chun-Yen Chang,et al.  Carrier transport across metal-semiconductor barriers , 1970 .

[6]  A. M. Mazzone,et al.  Monte Carlo simulation of current transport in forward-biased Schottky-barrier diodes , 1976 .

[7]  P. J. Price,et al.  Monte Carlo calculations on hot electron energy tails , 1977 .

[8]  A simple model for computer simulation of Schottky-barrier diodes☆ , 1984 .

[9]  U. Ravaioli,et al.  Advantages of collocation methods over finite differences in one-dimensional Monte Carlo simulations of submicron devices , 1985, IEEE Transactions on Electron Devices.

[10]  G. Iafrate,et al.  Time‐dependent ensemble Monte Carlo simulation for planar‐doped GaAs structures , 1985 .

[11]  N. Cheung,et al.  Extraction of Schottky diode parameters from forward current-voltage characteristics , 1986 .

[12]  A revised boundary condition for the numerical analysis of Schottky barrier diodes , 1986, IEEE Electron Device Letters.

[13]  Mark S. Lundstrom,et al.  Monte Carlo simulation of GaAs Schottky barrier behaviour , 1987 .

[14]  Bruno Riccò,et al.  MOS2: an efficient MOnte Carlo Simulator for MOS devices , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[16]  Robert W. Dutton,et al.  Hot carrier transport effect in Schottky-barrier diode grown by MBE , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  P. Lugli,et al.  The Monte Carlo Method for Semiconductor Device Simulation , 1990 .

[18]  David J. Frank,et al.  Monte Carlo analysis of semiconductor devices: the DAMOCLES program , 1990 .

[19]  Karl Hess,et al.  Monte Carlo Device Simulation: Full Band and Beyond , 1991 .

[20]  D. Donoval,et al.  Revised theory of current transport through the Schottky structure , 1992 .

[21]  Thomas W. Crowe,et al.  GaAs Schottky diodes for THz mixing applications , 1992, Proc. IEEE.

[22]  N. R. Erickson,et al.  Low-noise submillimeter receivers using single-diode harmonic mixers , 1992, Proc. IEEE.

[23]  L. Reggiani,et al.  Monte Carlo analysis of noise spectra in Schottky‐barrier diodes , 1993 .

[24]  C. Moglestue,et al.  Monte Carlo Simulation of Semiconductor Devices , 1993, Springer Netherlands.

[25]  R. J. Mattauch,et al.  Numerical simulation of the current-voltage characteristics of heteroepitaxial Schottky-barrier diodes , 1993 .

[26]  Robert E. Miles,et al.  Compound Semiconductor Device Modelling , 1993 .

[27]  T. González,et al.  One-dimensional Monte Carlo analysis of electron transport in submicrometre silicon structures , 1994 .

[28]  R. W. Kelsall,et al.  The Monte Carlo method for semiconductor device simulation , 1995 .