A Self-Adaptive Ant Colony System for Semantic Query Routing Problem in P2P Networks

In this paper, we present a new algorithm to route text queries within a P2P network, called Neighboring-Ant Search (NAS) algorithm. The algorithm is based on the Ant Colony System metaheuristic and the SemAnt algorithm. More so, NAS is hybridized with local environment strategies of learning, characterization, and exploration. Two Learning Rules (LR) are used to learn from past performance, these rules are modified by three new Learning Functions (LF). A Degree-Dispersion-Coefficient (DDC) as a local topological metric is used for the structural characterization. A variant of the well-known one-step Lookahead exploration is used to search the nearby environment. These local strategies make NAS self-adaptive and improve the performance of the distributed search. Our results show the contribution of each proposed strategy to the performance of the NAS algorithm. The results reveal that NAS algorithm outperforms methods proposed in the literature, such as Random-Walk and SemAnt.

[1]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[2]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[3]  Guy Desaulniers,et al.  A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows , 2009, Networks.

[4]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[5]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[6]  Gerti Kappel,et al.  Ant Algorithms for Self-Organization in Social Networks Conducted for the purpose of receiving the academic title 'Doktorin der technischen Wissenschaften' Advisors , 2007 .

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  German Sakaryan A content-oriented approach to topology evolution and search in peer-to-peer systems , 2004 .

[9]  Jan-Ming Ho,et al.  AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer Networks , 2006, ISCC.

[10]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[11]  Lionel Amodeo,et al.  Bi-Objective Ant Colony Optimization approach to optimize production and maintenance scheduling , 2010, Comput. Oper. Res..

[12]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[13]  Mehmet Mutlu Yenisey,et al.  Ant colony optimization for multi-objective flow shop scheduling problem , 2008, Comput. Ind. Eng..

[14]  Babak Amiri,et al.  A Multi-Objective Hybrid Optimization Algorithm for Project Selection Problem , 2012 .

[15]  Kalyanmoy Deb,et al.  Multi-objective evolutionary algorithms: introducing bias among Pareto-optimal solutions , 2003 .

[16]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using an outranking-based dominance generalization , 2010, Comput. Oper. Res..

[17]  Christian Stummer,et al.  Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple objectives , 2003, IEEE Trans. Engineering Management.

[18]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[19]  Carlos A. Coello Coello,et al.  Preference incorporation to solve many-objective airfoil design problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[20]  Diomidis Spinellis,et al.  A survey of peer-to-peer content distribution technologies , 2004, CSUR.

[21]  Eduardo Fernandez,et al.  Evolutionary multi-objective optimization for inferring outranking model’s parameters under scarce reference information and effects of reinforced preference , 2012 .

[22]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[23]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[24]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[25]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[26]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[27]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[28]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[29]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[30]  Richard F. Hartl,et al.  Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection , 2006, Eur. J. Oper. Res..

[31]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[32]  Xiaodong Li,et al.  Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach , 2008, SEAL.

[33]  Juan Gaytán Iniestra,et al.  Multicriteria decisions on interdependent infrastructure transportation projects using an evolutionary-based framework , 2009, Appl. Soft Comput..

[34]  Kalyanmoy Deb,et al.  Interactive evolutionary multi-objective optimization and decision-making using reference direction method , 2007, GECCO '07.

[35]  S. Ghorbani,et al.  A new multi-objective algorithm for a project selection problem , 2009, Adv. Eng. Softw..

[36]  B. Bollobás The evolution of random graphs , 1984 .

[37]  Murat Köksalan,et al.  An Interactive Territory Defining Evolutionary Algorithm: iTDEA , 2010, IEEE Transactions on Evolutionary Computation.

[38]  Jyrki Wallenius,et al.  Interactive evolutionary multi-objective optimization for quasi-concave preference functions , 2010, Eur. J. Oper. Res..

[39]  Fereidoun Ghasemzadeh,et al.  A zero-one model for project portfolio selection and scheduling , 1999, J. Oper. Res. Soc..

[40]  Claudia Gómez Santillán,et al.  Impact of Dynamic Growing on the Internet Degree Distribution , 2007, ISPA Workshops.

[41]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  Jaap Spronk,et al.  Erim Report Series Research in Management a Framework for Managing a Portfolio of Socially Responsible Investments Bibliographic Data and Classifications , 2002 .

[43]  Jeffrey M. Keisler,et al.  Portfolio decision analysis : improved methods for resource allocation , 2011 .

[44]  Lily Rachmawati,et al.  Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[45]  Stefan Biffl,et al.  Applied Soft Computing Software Project Portfolio Optimization with Advanced Multiobjective Evolutionary Algorithms , 2022 .

[46]  David W. Corne,et al.  Techniques for highly multiobjective optimisation: some nondominated points are better than others , 2007, GECCO '07.

[47]  J. Branke,et al.  Interactive evolutionary multiobjective optimization driven by robust ordinal regression , 2010 .

[48]  Walter J. Gutjahr,et al.  Multi-objective decision analysis for competence-oriented project portfolio selection , 2010, Eur. J. Oper. Res..

[49]  Rafael Caballero,et al.  Solving a comprehensive model for multiobjective project portfolio selection , 2010, Comput. Oper. Res..

[50]  Bernard W. Taylor,et al.  Multiple criteria R&D project selection and scheduling using fuzzy logic , 1996, Comput. Oper. Res..

[51]  Julio M. Ottino,et al.  Complex systems and networks: Challenges and opportunities for chemical and biological engineers , 2004 .

[52]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[53]  H. HéctorJ.Fraire,et al.  NAS Algorithm for Semantic Query Routing Systems in Complex Networks , 2008, DCAI.

[54]  Chiuh-Cheng Chyu,et al.  Applying Memetic Algorithm in Multi-Objective Resource Allocation among Competing Projects , 2010, J. Softw..

[55]  Amin Saberi,et al.  Random Walks with Lookahead on Power Law Random Graphs , 2006, Internet Math..

[56]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[57]  Carlos A. Bana e Costa,et al.  Readings in Multiple Criteria Decision Aid , 2011 .

[58]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..