Variation in the distribution of a genome-specific DNA sequence on chromosomes reveals evolutionary relationships in the Triticum and Aegilops complex

[1]  B. Gill,et al.  Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster , 2002, Plant Systematics and Evolution.

[2]  B. Gill,et al.  The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction , 2001, Chromosoma.

[3]  T. Naranjo,et al.  Pairing affinities of the B- and G-genome chromosomes of polyploid wheats with those of Aegilops speltoides. , 2000, Genome.

[4]  P. Zhang,et al.  Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines , 2000, Theoretical and Applied Genetics.

[5]  M. Feldman,et al.  Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences , 1998 .

[6]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[7]  J. Bennetzen,et al.  The unified grass genome: synergy in synteny. , 1997, Genome research.

[8]  B. Gill,et al.  Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. , 1996, Genome.

[9]  D. Ward,et al.  A conserved repetitive DNA element located in the centromeres of cereal chromosomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Tsunewaki,et al.  Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra- and interspecific variations of five Aegilops Sitopsis species , 1996, Theoretical and Applied Genetics.

[11]  B. Gill,et al.  Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. , 1996, Genome.

[12]  B. Gill,et al.  Detection of intergenomic translocations with centromeric and noncentromeric breakpoints in Triticum araraticum: mechanism of origin and adaptive significance. , 1995, Genome.

[13]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[14]  K. Tsunewaki,et al.  Molecular variation in chloroplast DNA regions in ancestral species of wheat. , 1994, Genetics.

[15]  Jiming Jiang,et al.  New 18S·26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats , 1994, Chromosoma.

[16]  B. Gill,et al.  Intraspecific karyotype divergence inTriticum araraticum (Poaceae) , 1994, Plant Systematics and Evolution.

[17]  Tomas A. Prolla,et al.  Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair , 1993, Nature.

[18]  J. S. Heslop-Harrison,et al.  Isolation and characterization of genome-specific DNA sequences in Triticeae species , 1993, Molecular and General Genetics MGG.

[19]  B. Gill,et al.  Repetitive DNA sequences from polyploid Elymus trachycaulus and the diploid progenitor species: detection and genomic affinity of Elymus chromatin added to wheat , 1991 .

[20]  J Dvorák,et al.  Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Appels,et al.  New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. , 1990, Genome.

[22]  K. Tsunewaki,et al.  The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops , 1990, Theoretical and Applied Genetics.

[23]  S. Castiglione,et al.  A repeated chromosomal DNA sequence is amplified as a circular extrachromosomal molecule in rice (Oryza sativa L.) , 1990, Molecular and General Genetics MGG.

[24]  J. Dvorak,et al.  Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species , 1989 .

[25]  K. Tsunewaki,et al.  Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis , 1988, Theoretical and Applied Genetics.

[26]  R. Appels,et al.  Relationships betweenNor-loci from differentTriticeae species , 1988, Plant Systematics and Evolution.

[27]  J. Kuspira,et al.  Cytological evidence bearing on the origin of the B genome in polyploid wheats , 1988 .

[28]  R. Appels,et al.  Rye heterochromatin. I: Studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element , 1986 .

[29]  B. Gill,et al.  Molecular identification of the D-genome chromosomes of wheat , 1986 .

[30]  K. Tsunewaki,et al.  The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops , 1984, Theoretical and Applied Genetics.

[31]  K. Tsunewaki,et al.  The Molecular Basis of Genetic Diversity among Cytoplasms of TRITICUM and AEGILOPS Species. II. on the Origin of Polyploid Wheat Cytoplasms as Suggested by Chloroplast DNA Restriction Fragment Patterns. , 1983, Genetics.

[32]  J. Dvorak,et al.  Chromosome and nucleotide sequence differentiation in genomes of polyploid Triticum species , 1982, Theoretical and Applied Genetics.

[33]  G. Dover,et al.  Molecular drive: a cohesive mode of species evolution , 1982, Nature.

[34]  J. Hutchinson,et al.  The nucleolar organisers of tetraploid and hexaploid wheats revealed by in situ hybridisation , 1982, Theoretical and Applied Genetics.

[35]  T. E. Miller,et al.  Comparison of the chromosomes of Triticum timopheevi with related wheats using the techniques of C-banding and in situ hybridization , 1982, Theoretical and Applied Genetics.

[36]  R. Thompson,et al.  A molecular description of telomeric heterochromatin in secale species , 1980, Cell.

[37]  J. S. Heslop-Harrison,et al.  Nuclear dna amounts in angiosperms. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[39]  R. B. Flavell,et al.  Genome size and the proportion of repeated nucleotide sequence DNA in plants , 1974, Biochemical Genetics.

[40]  D. Hourcade,et al.  The amplification of ribosomal RNA genes involves a rolling circle intermediate. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Feldman IDENTIFICATION OF UNPAIRED CHROMOSOMES IN F1 HYBRIDS INVOLVING TRITICUM AESTIVUM AND T. TIMOPHEEV II , 1966 .

[42]  R. Riley,et al.  EVIDENCE ON THE ORIGIN OF THE B GENOME OF WHEAT , 1958 .

[43]  G. Stebbins,et al.  MORPHOLOGICAL EVIDENCE CONCERNING THE ORIGIN OF THE B GENOME IN WHEAT , 1956 .

[44]  A. Vershinin,et al.  Identification of a new family of tandem repeats in Triticeae genomes , 2004, Euphytica.

[45]  K. Tsunewaki,et al.  Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats , 2004, Theoretical and Applied Genetics.

[46]  T. Naranjo,et al.  Genome evolution in Triticeae , 2000 .

[47]  G. Segal,et al.  Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. , 1998, Genome.

[48]  K. Tsunewaki Plasma analysis as the counterpart of genome analysis , 1996 .

[49]  B. Friebe Chromosome banding and genome analysis in diploid and cultivated polyploid wheats , 1996 .

[50]  J. Dvorak,et al.  GENOME IDENTIFICATION OF THE TRITICUM CRASSUM COMPLEX (POACEAE) WITH THE RESTRICTION PATTERNS OF REPEATED NUCLEOTIDE SEQUENCES , 1995 .

[51]  M. Slageren Wild wheats : a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae) : a revision of all taxa closely related to wheat, excluding wild Triticum species, with notes on other genera in the tribe Triticeae, especially Triticum , 1994 .

[52]  G. Dover,et al.  Evolution of genetic redundancy for advanced players. , 1993, Current opinion in genetics & development.

[53]  K. Tsunewaki,et al.  The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops : 7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species. , 1990, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.

[54]  K. Tsunewaki,et al.  Aegilops searsii is a possible cytoplasm donor to Ae. kotschyi and Ae. variabilis , 1988 .

[55]  G. Dover Molecular drive in multigene families: How biological novelties arise, spread and are assimilated , 1986 .

[56]  R. Flavell Repeated Sequences and Genome Change , 1985 .

[57]  R. Flavell Repeated Sequences and Genome Architecture , 1983 .

[58]  J. Witcombe A guide to the species of Aegilops L. : their taxonomy, morphology and distribution , 1983 .

[59]  Bikram S. Gill,et al.  Role of cytoplasm-specific introgression in the evolution of the polyploid wheats , 2022 .