Improving zero-error classical communication with entanglement
暂无分享,去创建一个
Debbie W. Leung | Andreas J. Winter | William Matthews | Toby S. Cubitt | A. Winter | D. Leung | W. Matthews | T. Cubitt
[1] Jianxin Chen,et al. Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel , 2009, IEEE Transactions on Information Theory.
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] Asher Peres,et al. Two simple proofs of the Kochen-Specker theorem , 1991 .
[4] C. Ross. Found , 1869, The Dental register.
[5] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[6] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[7] Alon Orlitsky,et al. Zero-Error Information Theory , 1998, IEEE Trans. Inf. Theory.
[8] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[9] D. Vernon. Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.
[10] Gilles Brassard,et al. Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .
[11] Francisco M. de Assis,et al. Quantum states characterization for the zero-error capacity , 2006 .
[12] Runyao Duan,et al. Super-Activation of Zero-Error Capacity of Noisy Quantum Channels , 2009, 0906.2527.
[13] Renato Renner,et al. Quantum pseudo-telepathy and the kochen-specker theorem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[14] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[15] S. Popescu,et al. Quantum nonlocality as an axiom , 1994 .
[16] Claude E. Shannon,et al. A mathematical theory of communication , 1948, MOCO.
[17] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[18] S. Massar,et al. Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.
[19] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[20] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[21] T. Mckeown. Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.
[22] E. Specker,et al. The Problem of Hidden Variables in Quantum Mechanics , 1967 .