A nonlocal electron transport model in the diffusion scaling of hydrodynamics

We analyze a model of nonlocal electron transport named P1-diffusion based on a spherical harmonic expansion in velocity space and a diffusion scaling, which makes it compatible with assumptions from magneto-hydrodynamics (MHD). An iterative, fully implicit (CFL-free, as defined by the Courant Friedrich Levy condition) and asymptotic preserving discretization is proposed, which necessitates the inversion of a possibly large number of—but small—linear systems. It is found accurate with respect to reference solutions from a Vlasov–Fokker–Planck–Maxwell code (based on a Polynomial expansion of order N, or PN expansion) on a series of tests, which are representative of the conduction zone in laser-created plasmas. Thereby, the present approach is a good candidate for being embedded in multi-D MHD codes.

[1]  P. Masson-Laborde,et al.  A deterministic numerical scheme for an electron heat transport model , 2022, Math. Comput. Simul..

[2]  L. Videau,et al.  First high radiant energy xenon-pipe-based x-ray source on LMJ , 2022, Physics of Plasmas.

[3]  P. Masson-Laborde,et al.  Analysis of a kinetic model for electron heat transport in inertial confinement fusion plasmas , 2022, Physics of Plasmas.

[4]  Chi-Wang Shu,et al.  High order entropy stable and positivity-preserving discontinuous Galerkin method for the nonlocal electron heat transport model , 2022, J. Comput. Phys..

[5]  P. Hoch,et al.  An asymptotic preserving method for the linear transport equation on general meshes , 2021, J. Comput. Phys..

[6]  E. Held,et al.  Transport coefficients for magnetic-field evolution in inviscid magnetohydrodynamics , 2021 .

[7]  P. Masson-Laborde,et al.  Measuring heat flux from collective Thomson scattering with non-Maxwellian distribution functions , 2019, Physics of Plasmas.

[8]  P. Masson-Laborde,et al.  Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations , 2018, Nuclear Fusion.

[9]  J. Miquel,et al.  LMJ & PETAL status and program overview , 2018, Nuclear Fusion.

[10]  M. Sherlock,et al.  Incorporating kinetic effects on Nernst advection in inertial fusion simulations , 2018, Plasma Physics and Controlled Fusion.

[11]  S. Weber,et al.  Nonlocal transport hydrodynamic model for laser heated plasmas , 2018 .

[12]  B. Dubroca,et al.  Asymptotic-preserving well-balanced scheme for the electronic M1 model in the diffusive limit: Particular cases , 2017 .

[13]  C. D. Sijoy,et al.  An improved and fully implicit multi-group non-local electron transport model and its validations , 2017 .

[14]  Mehul V. Patel,et al.  Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications , 2017, 1704.08963.

[15]  D. Turnbull,et al.  Progress towards a more predictive model for hohlraum radiation drive and symmetry , 2016, Physics of plasmas.

[16]  Gregory A. Moses,et al.  Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations , 2015 .

[17]  P. A. Norreys,et al.  A Vlasov-Fokker-Planck code for high energy density physics , 2011, J. Comput. Phys..

[18]  Mohammed Lemou,et al.  Relaxed micro-macro schemes for kinetic equations , 2010 .

[19]  P. Degond,et al.  The moment‐guided Monte Carlo method , 2009, 0908.0261.

[20]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[21]  Christopher Ridgers,et al.  Rapid self-magnetization of laser speckles in plasmas by nonlinear anisotropic instability , 2009 .

[22]  Zheng Jian,et al.  A Fokker-Planck Code for Laser-Produced Plasmas , 2008 .

[23]  J.-L. Feugeas,et al.  A practical nonlocal model for heat transport in magnetized laser plasmas , 2006 .

[24]  Luc Mieussens,et al.  Implicit Schemes for the Fokker-Planck-Landau Equation , 2005, SIAM J. Sci. Comput..

[25]  Luc Mieussens,et al.  Fast implicit schemes for the Fokker–Planck–Landau equation , 2004 .

[26]  A. R. Bell,et al.  An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .

[27]  Guy Schurtz,et al.  A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes , 2000 .

[28]  Stephan Brunner,et al.  Linear delta-f simulations of nonlocal electron heat transport , 2000 .

[29]  Pierre Degond,et al.  Transport coefficients of plasmas and disparate mass binary gases , 1996 .

[30]  C. Ferro-Fontán,et al.  Nonlocal Heat Transport in the Solar Wind , 1996 .

[31]  R. Short,et al.  A practical nonlocal model for electron heat transport in laser plasmas , 1991 .

[32]  M. Haines,et al.  Nonlinear electron transport in magnetized laser plasmas , 1986 .

[33]  Edward W. Larsen,et al.  Discretization methods for one-dimensional Fokker-Planck operators , 1985 .

[34]  A. R. Bell,et al.  Non‐Spitzer heat flow in a steadily ablating laser‐produced plasma , 1985 .

[35]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[36]  Michael Bussmann,et al.  Implicit reduced Vlasov-Fokker-Planck-Maxwell model based on high-order mixed elements , 2021, J. Comput. Phys..

[37]  E. Epperlein Effect of electron collisions on ion‐acoustic waves and heat flow , 1994 .