A Survey of Trefftz Methods for the Helmholtz Equation

[1]  R. Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the $$hp$$hp-Version , 2016, Found. Comput. Math..

[2]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[3]  P. Ladevèze,et al.  The Variational Theory of Complex Rays applied to the shallow shell theory , 2015 .

[4]  Fernando Reitich,et al.  A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation , 2015, J. Comput. Phys..

[5]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[6]  Ilaria Perugia,et al.  A priori error analysis of space–time Trefftz discontinuous Galerkin methods for wave problems , 2015, 1501.05253.

[7]  Timothy C. Warburton,et al.  Residual-Based Adaptivity and PWDG Methods for the Helmholtz Equation , 2014, SIAM J. Sci. Comput..

[8]  Lise-Marie Imbert-Gérard Interpolation properties of generalized plane waves , 2015, Numerische Mathematik.

[9]  Sean F. Wu The Helmholtz Equation Least-Squares Method , 2015 .

[10]  Andrea Moiola,et al.  Implementation of an interior point source in the ultra weak variational formulation through source extraction , 2014, J. Comput. Appl. Math..

[11]  S. Chandler-Wilde,et al.  Acoustic scattering: high frequency boundary element methods and unified transform methods , 2014, 1410.6137.

[12]  Euan A. Spence,et al.  Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering , 2014, SIAM J. Math. Anal..

[13]  Pierre Ladevèze,et al.  On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics , 2014 .

[14]  Bruno Després,et al.  A generalized plane-wave numerical method for smooth nonconstant coefficients , 2014 .

[15]  Julien Diaz,et al.  A Local Wave Tracking Strategy for Efficiently Solving Mid- and High-Frequency Helmholtz Problems , 2014 .

[16]  Wim Desmet,et al.  The wave based method: An overview of 15 years of research , 2014 .

[17]  Ralf Hiptmair,et al.  Dispersion analysis of plane wave discontinuous Galerkin methods , 2014 .

[18]  R. Hiptmair,et al.  Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes , 2014 .

[19]  Fuming Ma,et al.  A least-squares finite element method for solving the polygonal-line arc-scattering problem , 2014 .

[20]  Bengt Fornberg,et al.  A spectrally accurate numerical implementation of the Fokas transform method for Helmholtz-type PDEs , 2014 .

[21]  Graham Coates,et al.  The equal spacing of N points on a sphere with application to partition-of-unity wave diffraction problems , 2014 .

[22]  Charbel Farhat,et al.  The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber , 2014 .

[23]  E. A. Spence,et al.  “When all else fails, integrate by parts” – an overview of new and old variational formulations for linear elliptic PDEs , 2014 .

[24]  Block Jacobi Relaxation for Plane Wave Discontinuous Galerkin Methods , 2014 .

[25]  Long Yuan,et al.  A Solver for Helmholtz System Generated by the Discretization of Wave Shape Functions , 2013 .

[26]  Jens Markus Melenk,et al.  General DG-Methods for Highly Indefinite Helmholtz Problems , 2013, J. Sci. Comput..

[27]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[28]  Peter Monk,et al.  Improvements for the ultra weak variational formulation , 2013 .

[29]  Pierre Ladevèze,et al.  The Variational Theory of Complex Rays: An answer to the resolution of mid-frequency 3D engineering problems , 2013 .

[30]  Fuming Ma,et al.  A least-squares non-polynomial finite element method for solving the polygonal-line grating problem , 2013 .

[31]  Long Yuan,et al.  A Weighted Variational Formulation Based on Plane Wave Basis for Discretization of Helmholtz Equations , 2013 .

[32]  Ilaria Perugia,et al.  Schwarz Domain Decomposition Preconditioners for Plane Wave Discontinuous Galerkin Methods , 2013, ENUMATH.

[33]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[34]  Henri Calandra,et al.  A Modified Discontinuous Galerkin Method for Solving Efficiently Helmholtz Problems , 2012 .

[35]  Ralf Hiptmair,et al.  Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-DGFEM , 2012 .

[36]  Wim Desmet,et al.  An efficient Wave Based Method for 2D acoustic problems containing corner singularities , 2012 .

[37]  Henri Calandra,et al.  A stable discontinuous Galerkin-type method for solving efficiently Helmholtz problems , 2012 .

[38]  Pierre Ladevèze,et al.  The Fourier version of the Variational Theory of Complex Rays for medium-frequency acoustics , 2012 .

[39]  Pierre Ladevèze,et al.  AN ADAPTIVE NUMERICAL STRATEGY FOR THE MEDIUM-FREQUENCY ANALYSIS OF HELMHOLTZ'S PROBLEM , 2012 .

[40]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[41]  C. Farhat,et al.  Overview of the discontinuous enrichment method, the ultra‐weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons , 2012 .

[42]  Onur Atak,et al.  The Wave Based Method , 2012 .

[43]  T Betcke,et al.  Approximation by dominant wave directions in plane wave methods , 2012 .

[44]  Onur Atak,et al.  "MID-FREQUENCY" CAE Methodologies for Mid-Frequency Analysis in Vibration and Acoustics , 2012 .

[45]  Ralf Hiptmair,et al.  Vekua theory for the Helmholtz operator , 2011 .

[46]  Ralf Hiptmair,et al.  Plane wave approximation of homogeneous Helmholtz solutions , 2011 .

[47]  J. Melenk,et al.  On Stability of Discretizations of the Helmholtz Equation (extended version) , 2011, 1105.2112.

[48]  Jens Markus Melenk,et al.  Wavenumber Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation , 2011, SIAM J. Numer. Anal..

[49]  G. Gabard,et al.  A comparison of wave‐based discontinuous Galerkin, ultra‐weak and least‐square methods for wave problems , 2011 .

[50]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[51]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[52]  A. Moiola Trefftz-discontinuous Galerkin methods for time-harmonic wave problems , 2011 .

[53]  Omar Laghrouche,et al.  Improvement of PUFEM for the numerical solution of high‐frequency elastic wave scattering on unstructured triangular mesh grids , 2010 .

[54]  Timo Betcke,et al.  An Exponentially Convergent Nonpolynomial Finite Element Method for Time-Harmonic Scattering from Polygons , 2010, SIAM J. Sci. Comput..

[55]  P. Monk,et al.  Hybridizing Raviart-Thomas Elements for the Helmholtz Equation , 2010 .

[56]  K. Y. Sze,et al.  Four- and eight-node hybrid-Trefftz quadrilateral finite element models for helmholtz problem , 2010 .

[57]  Yiorgos Sokratis Smyrlis,et al.  Density results with linear combinations of translates of fundamental solutions , 2009, J. Approx. Theory.

[58]  Charbel Farhat,et al.  A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers , 2009 .

[59]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[60]  G. Gabard Exact integration of polynomial–exponential products with application to wave-based numerical methods , 2009 .

[61]  Charbel Farhat,et al.  Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..

[62]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[63]  Daan Huybrechs,et al.  Highly Oscillatory Problems: Highly oscillatory quadrature , 2009 .

[64]  Ralf Hiptmair,et al.  Mixed Plane Wave Discontinuous Galerkin Methods , 2009 .

[65]  Pierre Ladevèze,et al.  THE MULTISCALE VTCR APPROACH APPLIED TO ACOUSTICS PROBLEMS , 2008 .

[66]  Christoph Pflaum,et al.  New Finite Elements for Large-Scale Simulation of Optical Waves , 2008, SIAM J. Sci. Comput..

[67]  Peter Monk,et al.  ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION OF THE HELMHOLTZ EQUATION , 2007 .

[68]  Charbel Farhat,et al.  A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems , 2008 .

[69]  A. Cheng,et al.  Trefftz and Collocation Methods , 2008 .

[70]  Timo Betcke,et al.  Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..

[71]  Bert Pluymers,et al.  Trefftz-Based Methods for Time-Harmonic Acoustics , 2007 .

[72]  Gwénaël Gabard,et al.  Discontinuous Galerkin methods with plane waves for time-harmonic problems , 2007, J. Comput. Phys..

[73]  R. J. Astley,et al.  A comparison of two Trefftz‐type methods: the ultraweak variational formulation and the least‐squares method, for solving shortwave 2‐D Helmholtz problems , 2007 .

[74]  Rabia Djellouli,et al.  A mixed hybrid formulation based on oscillated finite element polynomials for solving Helmholtz problems , 2007 .

[75]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods , 2007 .

[76]  Emmanuel Perrey-Debain,et al.  Plane wave decomposition in the unit disc: convergence estimates and computational aspects , 2006 .

[77]  Ivo Babuška,et al.  The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .

[78]  Fengyan Li,et al.  A Local-structure-preserving Local Discontinuous Galerkin Method for the Laplace Equation , 2006 .

[79]  Igor Tsukerman,et al.  A class of difference schemes with flexible local approximation , 2006 .

[80]  Pablo Gamallo,et al.  Comparison of two wave element methods for the Helmholtz problem , 2006 .

[81]  Qing-Hua Qin,et al.  Trefftz Finite Element Method and Its Applications , 2005 .

[82]  Carlos J. S. Alves,et al.  Numerical comparison of two meshfree methods for acoustic wave scattering , 2005 .

[83]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[84]  Jon Trevelyan,et al.  Wave interpolation finite elements for Helmholtz problems with jumps in the wave speed , 2005 .

[85]  R. J. Astley,et al.  Special short wave elements for flow acoustics , 2005 .

[86]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[87]  P. Bettess,et al.  Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  Graeme Fairweather,et al.  The method of fundamental solutions for scattering and radiation problems , 2003 .

[89]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .

[90]  Seminar for Applied Mathematics , 2003 .

[91]  J. Kaipio,et al.  Computational aspects of the ultra-weak variational formulation , 2002 .

[92]  R. J. Astley,et al.  Modelling of short wave diffraction problems using approximating systems of plane waves , 2002 .

[93]  Christian Hafner,et al.  Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[94]  Joseph B. Keller,et al.  A hybrid numerical asymptotic method for scattering problems , 2001 .

[95]  R. García-Pelayo,et al.  Multiple Scattering , 2001 .

[96]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[97]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[98]  P. Barbone,et al.  Numerical and spectral investigations of Trefftz infinite elements , 1999 .

[99]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[100]  W. Desmet A wave based prediction technique for coupled vibro-acoustic analysis , 1998 .

[101]  Małgorzata Stojek,et al.  LEAST-SQUARES TREFFTZ-TYPE ELEMENTS FOR THE HELMHOLTZ EQUATION , 1998 .

[102]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[103]  Ivo Babuška,et al.  Solution of Helmholtz problems by knowledge-based FEM , 1997 .

[104]  Jan Mandel,et al.  The Finite Ray Element Method for the Helmholtz Equation of Scattering: First Numerical Experiments , 1997 .

[105]  O. Zienkiewicz Trefitz type approximation and the generalized flnite element method | history and development , 1997 .

[106]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[107]  Olivier Cessenat,et al.  Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques : problèmes de Helmholtz 2D et de Maxwell 3D , 1996 .

[108]  E. Kita,et al.  Trefftz method: an overview , 1995 .

[109]  O. C. Zienkiewicz,et al.  Solution of Helmholtz equation by Trefftz method , 1991 .

[110]  Charles I. Goldstein,et al.  The weak element method applied to Helmholtz type equations , 1986 .

[111]  A. Aziz,et al.  A NEW APPROXIMATION METHOD FOR THE HELMHOLTZ EQUATION IN AN EXTERIOR DOMAIN , 1982 .

[112]  Stanley C. Eisenstat On the Rate of Convergence of the Bergman–Vekua Method for the Numerical Solution of Elliptic Boundary Value Problems , 1974 .

[113]  J. Charles,et al.  A Sino-German λ 6 cm polarization survey of the Galactic plane I . Survey strategy and results for the first survey region , 2006 .

[114]  Alan B. Tayler,et al.  New methods for solving elliptic equations , 1969 .

[115]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[116]  Stefan Bergman,et al.  Integral Operators In The Theory Of Linear Partial Differential Equations , 1962 .

[117]  Peter Henrici,et al.  A survey of I. N. Vekua's theory of elliptic partial differential equations with analytic coefficients , 1957 .