Direct Writing Technology Advances and Developments

Abstract Direct writing (DW), also known as digital writing or digital printing, is a family of flexible multi-length scale processes for the deposition of functional materials to form simple linear or complex conformal structures on a substrate. This paper provides an overview of key DW technologies and their process characteristics under a unified classification system. In DW, a variety of mechanisms and energy modes such as inkjet, laser, mechanical pressure and tips are used to create material transfer to produce features from the nm to the mm range. This new group of additive on-demand processes complements existing manufacturing methods especially in product miniaturization and geometrical footprint reduction due to its conformal writing capability. The range of materials is exceptionally wide, ranging from metallics, ceramics, dielectrics and polymers to biomaterials. The thickness of the layer ranges from a monolayer of molecules to hundreds of micrometres. As DW is a scalable process, it is capable of high-throughput volume production, especially in microelectronics. Industrial applications have been expanding and numerous niche examples are given to illustrate meso-, micro- and nano-scale applications. Finally, challenges for its future development are also discussed.

[1]  Gideon Levy,et al.  RAPID MANUFACTURING AND RAPID TOOLING WITH LAYER MANUFACTURING (LM) TECHNOLOGIES, STATE OF THE ART AND FUTURE PERSPECTIVES , 2003 .

[2]  Vincent Malba,et al.  Laser surface modification for selective electroplating of metal: A 2.5 m/s laser direct write process , 1992 .

[3]  A. N. Jette,et al.  Metal deposition at 532 nm using a laser transfer technique , 1988 .

[4]  Qingbin Liu,et al.  High precision solder droplet printing technology and the state-of-the-art , 2001 .

[5]  Osman A. Basaran,et al.  Small‐scale free surface flows with breakup: Drop formation and emerging applications , 2002 .

[6]  F. Foulon,et al.  Argon-ion laser direct-write Al deposition from trialkylamine alane precursors , 1993 .

[7]  O. Lehmann,et al.  Three-dimensional laser direct writing of electrically conducting and isolating microstructures , 1994 .

[8]  M. Marengo,et al.  The impact of a single drop on a wetted solid surface , 1997 .

[9]  Herbert Schulz,et al.  High-Speed Machining , 1992 .

[10]  J. Tlusty High-Speed Machining , 1993 .

[11]  Bruce Zhi Gao,et al.  Dimensionless parameters for the design of optical traps and laser guidance systems. , 2004, Applied optics.

[12]  R. A. McGill,et al.  A novel laser transfer process for direct writing of electronic and sensor materials , 1999 .

[13]  J. C. Morgan,et al.  Focused ion beam mask repair , 1998 .

[14]  Costas Fotakis,et al.  Laser patterning of Zn for ZnO nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum , 2007 .

[15]  R. E. Acosta,et al.  Investigation of Laser‐Enhanced Electroplating Mechanisms , 1981 .

[16]  B R Ringeisen,et al.  Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. , 2002, Biomaterials.

[17]  Q Liu,et al.  On precision droplet-based net-form manufacturing technology , 2001 .

[18]  D. M. Tanner,et al.  Electrical and chemical characterization of FIB-deposited insulators , 1997 .

[19]  F. J. Adrian,et al.  Metal deposition from a supported metal film using an excimer laser , 1986 .

[20]  William Paul King,et al.  Thermal Dip Pen Nanolithography , 2006 .

[21]  Orven F. Swenson,et al.  Aerosol flow through a long micro-capillary: collimated aerosol beam , 2008 .

[22]  R. T. Hill,et al.  Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser. , 2006, Analytical chemistry.

[23]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Paul J. Campagnola,et al.  Submicron Multiphoton Free-Form Fabrication of Proteins and Polymers: Studies of Reaction Efficiencies and Applications in Sustained Release , 2000 .

[25]  D. Odde,et al.  Laser-guided direct writing for applications in biotechnology. , 1999, Trends in biotechnology.

[26]  Scott A. Mathews,et al.  Laser direct-write and its application in low temperature Co-fired ceramic (LTCC) technology , 2003 .

[27]  H. Kudo,et al.  Superplastic Precision Forming of Ti-Alloy Integrated Turbine Disc , 1986 .

[28]  Alberto Piqué,et al.  Direct-write technologies for rapid prototyping applications : sensors, electronics and integrated power sources , 2002 .

[29]  Lubomyr T. Romankiw,et al.  Laser-enhanced plating and etching: mechanisms and applications , 1982 .

[30]  Bo Li,et al.  ROBUST DIRECT-WRITE DISPENSING TOOL AND SOLUTIONS FOR MICRO/MESO-SCALE MANUFACTURING AND PACKAGING , 2007 .

[31]  R. T. Hill,et al.  Microfabrication of three-dimensional bioelectronic architectures. , 2005, Journal of the American Chemical Society.

[32]  Donald J. Hayes,et al.  MicroJet printing of solder and polymers for multi-chip modules and chip-scale packages , 1999 .

[33]  Mark A. Ratner,et al.  Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model , 2001 .

[34]  U. Schubert,et al.  Inkjet Printing of Polymers: State of the Art and Future Developments , 2004 .

[35]  Alberto Piqué,et al.  Rapid prototyping of micropower sources by laser direct-write , 2004 .

[36]  Horacio Dante Espinosa,et al.  A multi-ink linear array of nanofountain probes , 2006 .

[37]  S. Schiaffino,et al.  Molten droplet deposition and solidification at low Weber numbers , 1997 .

[38]  Hong,et al.  Multiple ink nanolithography: toward a multiple-Pen nano-plotter , 1999, Science.

[39]  A Ahluwalia,et al.  Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. , 2002, Tissue engineering.

[40]  Robert Puers,et al.  A review of focused ion beam applications in microsystem technology , 2001 .

[41]  S. D. Allen,et al.  Laser Enhanced Electroless Plating of Micron‐Scale Copper Wires , 2000 .

[42]  Jooho Moon,et al.  Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[43]  Alberto Piqué,et al.  Li-ion microbatteries generated by a laser direct-write method , 2004 .

[44]  Chad A Mirkin,et al.  Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays. , 2006, Angewandte Chemie.

[45]  Karsten Haupt,et al.  Direct writing of molecularly imprinted microstructures using a nanofountain pen , 2007 .

[46]  J. Bridgwater,et al.  The extrusion mechanics of pastes—the influence of paste formulation on extrusion parameters , 1987 .

[47]  R. A. McGill,et al.  Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write , 2003 .

[48]  Jesper Serbin,et al.  Three-dimensional nanostructuring of hybrid materials by two-photon polymerization , 2003, SPIE Optics + Photonics.

[49]  R. A. McGill,et al.  Laser deposition of polymer and biomaterial films. , 2003, Chemical reviews.

[50]  Bahaa E. A. Saleh,et al.  Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization , 2004 .

[51]  Takuji Ogawa,et al.  Electronic conductive characteristics of devices fabricated with 1,10-decanedithiol and gold nanoparticles between 1-μm electrode gaps , 2001 .

[52]  R. A. McGill,et al.  The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write , 2001 .

[53]  Thomas A. Baer,et al.  Hierarchically Structured Functional Porous Silica and Composite Produced by Evaporation-Induced Self-Assembly , 2001 .

[54]  Robert Lee Melcher,et al.  Laser enhanced electroplating and maskless pattern generation , 1979 .

[55]  Sawyer B. Fuller,et al.  Ink-jet printed nanoparticle microelectromechanical systems , 2002 .

[56]  R. Hagedorn,et al.  Laser-direct-write creation of three-dimensional OREST microcages for contact-free trapping, handling and transfer of small polarizable neutral objects in solution , 2005 .

[57]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[58]  H. D. Wu,et al.  Direct writing of conformal mesoscopic electronic devices by MAPLE DW , 2000 .

[59]  Eric Fogarassy,et al.  Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films , 1989 .

[60]  Marco Marengo,et al.  Time evolution of liquid drop impact onto solid, dry surfaces , 2002 .

[61]  Tarasankar Pal,et al.  Molecular Photonic Switches Employing Ions and Nanoparticles of Coinage and Platinum Metals , 2000 .

[62]  I. Hutchings,et al.  Inkjet printing - the physics of manipulating liquid jets and drops , 2008 .

[63]  Robert E. Newnham,et al.  Particle size dependent high frequency dielectric properties of barium titanate , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[64]  G. Schatz,et al.  Anomalous surface diffusion in nanoscale direct deposition processes. , 2003, Physical review letters.

[65]  Alberto Piqué,et al.  Time-resolved optical microscopy of a laser-based forward transfer process , 2001 .

[66]  John D. Perkins,et al.  Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits , 2007 .

[67]  Horacio D Espinosa,et al.  A nanofountain probe with Sub-100 nm molecular writing resolution. , 2005, Small.

[68]  K. Yoshino,et al.  Absorption cross-section measurements of water vapor in the wavelength region 181 199 nm , 2003 .

[69]  A. Yarin Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing ... , 2006 .

[70]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[71]  M. Wanke,et al.  Laser Rapid Prototyping of Photonic Band-Gap Microstructures , 1997, Science.

[72]  Olivier Pouliquen,et al.  Crystallization of non-Brownian Spheres under Horizontal Shaking , 1997 .

[73]  Marc Schmidt,et al.  Growth of patterned thin metal oxide films on glass substrates from metallic bulk sources using a Q-switched YAG laser , 2005 .

[74]  M. E. Gross,et al.  A chemical and mechanistic view of reaction profiles in laser direct‐write metallization in metallo‐organic films. Gold. , 1986 .

[75]  Alberto Piqué,et al.  Laser printing of nanocomposite solid-state electrolyte membranes for Li micro-batteries , 2006 .

[76]  A. Doraiswamy,et al.  Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. , 2007, Journal of biomedical materials research. Part A.

[77]  J. Lewis,et al.  Direct writing in three dimensions , 2004 .

[78]  Klaus Edinger,et al.  Study of precursor gases for focused ion beam insulator deposition , 1998 .

[79]  Stewart Xu Cheng,et al.  Producing molten metal droplets with a pneumatic droplet-on-demand generator , 2005 .

[80]  Y. Nahmias,et al.  Laser-guided direct writing for three-dimensional tissue engineering. , 2005, Biotechnology and bioengineering.

[81]  K. A. Padmanabhan,et al.  Superplasticity: A review , 1970 .

[82]  Jang Sub Kim,et al.  Direct writing of copper conductive patterns by ink-jet printing , 2007 .

[83]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[84]  J. M. Fernández-Pradas,et al.  Laser-induced forward transfer of liquids: Study of the droplet ejection process , 2006 .

[85]  M. Mickle,et al.  Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits , 2005, IEEE Transactions on Electronics Packaging Manufacturing.

[86]  B. Meinders,et al.  Selective metallization of alumina by laser , 1991 .

[87]  Fred Mitlitsky,et al.  Wafer‐scale laser pantography: Fabrication of n‐metal‐oxide‐semiconductor transistors and small‐scale integrated circuits by direct‐write laser‐induced pyrolytic reactions , 1983 .

[88]  M. Boman,et al.  Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high-pressure laser chemical vapor deposition , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[89]  Costas Fotakis,et al.  ZnO nanorod micropatterning via laser-induced forward transfer , 2007 .

[90]  Thomas W. Kenny,et al.  Atomic force microscope cantilevers for combined thermomechanical data writing and reading , 2001 .

[91]  Brian Derby,et al.  Ink‐Jet Printing and Sintering of PZT , 2005 .

[92]  J. M. Fernández-Pradas,et al.  Laser direct writing of biomolecule microarrays , 2004 .

[93]  Richard J. Young,et al.  Focused ion beam insulator deposition , 1995 .

[94]  J. M. Fernández-Pradas,et al.  Laser-induced forward transfer of biomolecules , 2004 .

[95]  Ekkard Brinksmeier,et al.  Assessment of Grinding Fluid Effectiveness in Continuous-Dress Creep Feed Grinding , 2002 .

[96]  P. K. Gallagher,et al.  Laser direct‐write metallization in thin palladium acetate films , 1987 .

[97]  Chaim N. Sukenik,et al.  Fountain pen nanochemistry: Atomic force control of chrome etching , 1999 .

[98]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[99]  H. Le,et al.  Progress and Trends in Ink-jet Printing Technology , 1998, Journal of Imaging Science and Technology.

[100]  Kyoil Hwang,et al.  Analysis of Line width with Nano Fountain Pen Using Active Membrane Pumping , 2007, 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[101]  M. Colina,et al.  DNA deposition through laser induced forward transfer. , 2005, Biosensors & bioelectronics.

[102]  Lee Mein Wee,et al.  Multiple-layer laser direct writing metal deposition in electrolyte solution , 2005 .

[103]  Bo Li,et al.  A Robust True Direct-Print Technology for Tissue Engineering , 2007 .

[104]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[105]  L. Tanner,et al.  The spreading of silicone oil drops on horizontal surfaces , 1979 .

[106]  D. Odde,et al.  Laser-guided direct writing of living cells. , 2000, Biotechnology and bioengineering.

[107]  Susan D. Allen,et al.  High deposition rate laser direct writing of Al on Si , 1991 .

[108]  Alberto Piqué,et al.  Laser-printed thick-film electrodes for solid-state rechargeable Li-ion microbatteries , 2007 .

[109]  Brian Derby,et al.  Freeform fabrication by controlled droplet deposition of powder filled melts , 2002 .

[110]  J A Barron,et al.  Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-dimensional Cell Patterns , 2004, Biomedical microdevices.

[111]  Brent A. Nelson,et al.  Nanoscale deposition of solid inks via thermal dip pen nanolithography , 2004 .