Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens

[1]  Fumihiko Ino,et al.  Efficient Acceleration of Mutual Information Computation for Nonrigid Registration Using CUDA , 2014, IEEE Journal of Biomedical and Health Informatics.

[2]  Visa Koivunen,et al.  Model order selection , 2014 .

[3]  I. Damjanov Pathology of the Liver , 2002, Modern Pathology.

[4]  I. Kopriva,et al.  Nonlinear mixture‐wise expansion approach to underdetermined blind separation of nonnegative dependent sources , 2013 .

[5]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[6]  I. Kopriva,et al.  Empirical kernel map approach to nonlinear underdetermined blind separation of sparse nonnegative dependent sources: pure component extraction from nonlinear mixture mass spectra , 2014 .

[7]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Pinky A. Bautista,et al.  Digital Staining of Unstained Pathological Tissue Samples through Spectral Transmittance Classification , 2005 .

[9]  Tryphon T. Georgiou,et al.  A new distribution metric for image segmentation , 2008, SPIE Medical Imaging.

[10]  Dustin G. Mixon,et al.  Images as Occlusions of Textures: A Framework for Segmentation , 2014, IEEE Transactions on Image Processing.

[11]  Michael Elad,et al.  On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations , 2008, IEEE Transactions on Information Theory.

[12]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[13]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[14]  Franz Pernkopf,et al.  Sparse nonnegative matrix factorization with ℓ0-constraints , 2012, Neurocomputing.

[15]  Konstantinos I. Diamantaras,et al.  Blind separation of multiple binary sources from one nonlinear mixture , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[18]  Pinky A. Bautista,et al.  Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance. , 2012, Journal of biomedical optics.

[19]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[20]  M. Castella,et al.  Inversion of Polynomial Systems and Separation of Nonlinear Mixtures of Finite-Alphabet Sources , 2008, IEEE Transactions on Signal Processing.

[21]  Yong Xiang,et al.  Nonnegative Blind Source Separation by Sparse Component Analysis Based on Determinant Measure , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[23]  Joel H. Saltz,et al.  Histopathological Image Analysis Using Model-Based Intermediate Representations and Color Texture: Follicular Lymphoma Grading , 2009, J. Signal Process. Syst..

[24]  Andrzej Cichocki,et al.  Blind decomposition of low‐dimensional multi‐spectral image by sparse component analysis , 2009 .

[25]  Nicolas Gillis,et al.  Using underapproximations for sparse nonnegative matrix factorization , 2009, Pattern Recognit..

[26]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[27]  Keinosuke Fukunaga,et al.  An Algorithm for Finding Intrinsic Dimensionality of Data , 1971, IEEE Transactions on Computers.

[28]  Stephan Preibisch,et al.  Efficient Bayesian-based multiview deconvolution , 2013, Nature Methods.

[29]  Toshiharu Nakai,et al.  Application of independent component analysis to magnetic resonance imaging for enhancing the contrast of gray and white matter , 2004, NeuroImage.

[30]  Paul W. Fieguth,et al.  Texture Classification from Random Features , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  A. Cichocki,et al.  Blind Separation and Extraction of Binary Sources , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[32]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[34]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[35]  Andrzej Cichocki,et al.  Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization , 2007, ICA.

[36]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[37]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[38]  Yonina C. Eldar,et al.  Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise , 2009, IEEE Transactions on Signal Processing.

[39]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[40]  Ivica Kopriva,et al.  Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent images for tumour demarcation , 2009, Medical Image Anal..

[41]  Srinivas C. Turaga,et al.  Machines that learn to segment images: a crucial technology for connectomics , 2010, Current Opinion in Neurobiology.

[42]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[43]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[44]  Konstantinos I. Diamantaras,et al.  A clustering approach for the blind separation of multiple finite alphabet sequences from a single linear mixture , 2006, Signal Process..

[45]  Lucas C. Parra,et al.  Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain , 2004, IEEE Transactions on Medical Imaging.

[46]  Akinobu Shimizu,et al.  Independent Component Analysis of Four-Phase Abdominal CT Images , 2004, MICCAI.

[47]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[48]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[49]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[50]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[51]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[52]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[53]  Anders Eklund,et al.  Medical image processing on the GPU - Past, present and future , 2013, Medical Image Anal..

[54]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[55]  Michael Zibulevsky,et al.  Underdetermined blind source separation using sparse representations , 2001, Signal Process..

[56]  Ehud Rivlin,et al.  Blind Decomposition of Transmission Light Microscopic Hyperspectral Cube Using Sparse Representation , 2009, IEEE Transactions on Medical Imaging.

[57]  R. Kennedy,et al.  Hilbert Space Methods in Signal Processing , 2013 .

[58]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .