Nature of grain boundaries in laser crystallized polycrystalline silicon thin films

The grain boundary populations in laser crystallized polycrystalline silicon thin films are determined by electron microscope analysis, using electron backscattering contrast in the scanning electron microscope, and convergent beam electron diffraction in the transmission electron microscope. The grain boundary populations of the grains larger than 0.5 μm are dominated by first and second order twin boundaries. This result is found to be a general feature of laser crystallization independent of the experimental details of the laser crystallization process. Texture analysis of the laser crystallized poly-Si films shows that under certain experimental conditions a {111}-preferential orientation of the grains perpendicular to the substrate can be obtained.

[1]  G. Nouet,et al.  EBIC and conductance measurements in poly- and bicrystalline silicon , 1987 .

[2]  Wayne A. Anderson,et al.  Effect of deposition temperature on the structural and electrical properties of laser-crystallized hydrogenated amorphous silicon films , 1996 .

[3]  J. Werner,et al.  Large-grained polycrystalline silicon on glass by copper vapor laser annealing , 1999 .

[4]  M. Stutzmann,et al.  Laser‐Interference Crystallization of Amorphous Silicon: Applications and Properties , 1998 .

[5]  N. H. Nickel,et al.  Step-by-step excimer laser induced crystallization of a-Si:H , 2000 .

[6]  Liu,et al.  Electronic and elastic properties of edge dislocations in Si. , 1995, Physical review. B, Condensed matter.

[7]  James S. Im,et al.  Controlled Super‐Lateral Growth of Si Films for Microstructural Manipulation and Optimization , 1998 .

[8]  Hartmann,et al.  Sulfur deficiency in iron pyrite (FeS2-x) and its consequences for band-structure models. , 1991, Physical review. B, Condensed matter.

[9]  W. Bollmann,et al.  Crystal Defects and Crystalline Interfaces , 1970 .

[10]  Michael O. Thompson,et al.  Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films , 1993 .

[11]  James S. Im,et al.  On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films , 1994 .

[12]  Paulo V. Santos,et al.  Dynamics of lateral grain growth during the laser interference crystallization of a-Si , 1999 .

[13]  Yamamoto,et al.  Theoretical study of grain boundaries in Si: Effects of structural disorder on the local electronic structure and the origin of band tails. , 1994, Physical review. B, Condensed matter.

[14]  J. Batstone In situ crystallization of amorphous silicon in the transmission electron microscope , 1993 .

[15]  Yamamoto,et al.  Tight-binding study of grain boundaries in Si: Energies and atomic structures of twist grain boundaries. , 1994, Physical review. B, Condensed matter.

[16]  H. Strunk,et al.  First and second order twin boundaries in edge defined film growth silicon ribbon , 1982 .

[17]  M. Hack,et al.  Laser dehydrogenation/crystallization of plasma‐enhanced chemical vapor deposited amorphous silicon for hybrid thin film transistors , 1994 .

[18]  H. Kakinuma Comprehensive interpretation of the preferred orientation of vapor-phase grown polycrystalline silicon films , 1995 .

[19]  Masaki Hara,et al.  XeCl Excimer Laser Annealing Used to Fabricate Poly-Si TFT's , 1989 .

[20]  F. Falk,et al.  Preparation of thick polycrystalline silicon layers on glass by laser irradiation , 1998 .

[21]  D. Cockayne,et al.  The dissociation of dislocations in silicon , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  T. Serikawa,et al.  Low-temperature fabrication of high-mobility poly-Si TFTs for large-area LCDs , 1989 .

[23]  N. Economou,et al.  Mode of growth and microstructure of polycrystalline silicon obtained by solid‐phase crystallization of an amorphous silicon film , 1994 .

[24]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[25]  J. Werner,et al.  Polycrystalline Semiconductors II , 1991 .

[26]  H. Gottschalk,et al.  Stacking fault energy and ionicity of cubic III–V compounds , 1978 .

[27]  U. Zeimer,et al.  Homoepitaxial Growth of Si at Low Temperature (325 °C) , 1999 .

[28]  S. Takeuchi,et al.  Stacking Fault Energies of Tetrahedrally Coordinated Crystals , 1999 .

[29]  J. P. Gowers,et al.  Excimer-laser-annealed poly-Si thin-film transistors , 1993 .

[30]  J. Werner,et al.  Nucleation and Growth of Crystalline Silicon Films on Glass for Solar Cells , 1998 .