Schwarz reflections and anti-holomorphic correspondences

In this paper, we continue exploration of the dynamical and parameter planes of one-parameter families of Schwarz reflections that was initiated in \cite{LLMM1,LLMM2}. Namely, we consider a family of quadrature domains obtained by restricting the Chebyshev cubic polynomial to various univalent discs. Then we perform a quasiconformal surgery that turns these reflections to parabolic rational maps (which is the crucial technical ingredient of our theory). It induces a straightening map between the parameter plane of Schwarz reflections and the parabolic Tricorn. We describe various properties of this straightening highlighting the issues related to its anti-holomorphic nature. We complete the discussion by comparing our family with the classical Bullett-Penrose family of matings between groups and rational maps induced by holomorphic correspondences. More precisely, we show that the Schwarz reflections give rise to anti-holomorphic correspondences that are matings of parabolic rational maps with the modular group.

[1]  William D. Brewer,et al.  Vol. II , 2020, The Works of Mary Robinson.

[2]  Dierk Schleicher,et al.  Multicorns are not path connected , 2014 .

[3]  A. Douady,et al.  Étude dynamique des polynômes complexes , 1984 .

[4]  S. Mukherjee,et al.  Discontinuity of Straightening in Anti-holomorphic Dynamics: I , 2016, 1605.08061.

[5]  J. Milnor Dynamics in one complex variable , 2000 .

[6]  On multicorns and unicorns II: bifurcations in spaces of antiholomorphic polynomials , 2014, Ergodic Theory and Dynamical Systems.

[7]  U. Bader,et al.  Ergodic Theory and Dynamical Systems , 2013 .

[8]  Harold S. Shapiro,et al.  Domains on which analytic functions satisfy quadrature identities , 1976 .

[9]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[10]  S. Bullett,et al.  Mating quadratic maps with the modular group , 1994 .

[11]  D. Schleicher Rational Parameter Rays of the Mandelbrot Set , 1997, Astérisque.

[12]  Y. Komori,et al.  Landing property of stretching rays for real cubic polynomials , 2004 .

[13]  L. Lomonaco Parabolic-like mappings , 2014, Ergodic Theory and Dynamical Systems.

[14]  S. Bullett,et al.  Mating quadratic maps with the modular group II , 2016, Inventiones mathematicae.

[15]  M. Lyubich,et al.  Dynamics of Schwarz Reflections: The Mating Phenomena , 2018, Annales Scientifiques de l'École Normale Supérieure.

[16]  Parabolic tools , 2010 .

[17]  Olli Lehto,et al.  Lectures on quasiconformal mappings , 1975 .

[18]  Bodil Branner,et al.  Quasiconformal surgery in holomorphic dynamics , 2013 .

[19]  Dierk Schleicher,et al.  On Multicorns and unicorns I: Antiholomorphic Dynamics, Hyperbolic Components and Real cubic Polynomials , 2003, Int. J. Bifurc. Chaos.

[20]  N. Makarov,et al.  Topology of quadrature domains , 2013, 1307.0487.

[21]  A minimal area problem in conformal mapping , 1999 .

[22]  S. Warschawski On conformal mapping of infinite strips , 1942 .

[23]  John H. Hubbard,et al.  On the dynamics of polynomial-like mappings , 1985 .

[24]  Schwarz reflections and the Tricorn , 2018, 1812.01573.