On the Rate of Multivariate Poisson Convergence

The distribution of the sum of independent nonidentically distributed Bernoulli random vectors inRkis approximated by a multivariate Poisson distribution. By using a multivariate adaption of Kerstan's (1964,Z. Wahrsch. verw. Gebiete2, 173?179) method, we prove a conjecture of Barbour (1988,J. Appl. Probab.25A, 175?184) on removing a log-term in the upper bound of the total variation distance. Second-order approximations are included.

[1]  Verallgemeinerung eines Satzes von Prochorow und Le Cam , 1964 .

[2]  R. Serfling Some Elementary Results on Poisson Approximation in a Sequence of Bernoulli Trials , 1978 .

[3]  D. McDonald,et al.  On the poisson approximation to the multinomial distribution , 1980 .

[4]  P. Hall,et al.  On the rate of Poisson convergence , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  P. Deheuvels,et al.  A Semigroup Approach to Poisson Approximation , 1986 .

[6]  E. L. Presman Approximation in Variation of the Distribution of a Sum of Independent Bernoulli Variables with a Poisson Law , 1986 .

[7]  A. Barbour Asymptotic expansions in the Poisson limit theorem , 1987 .

[8]  Dietmar Pfeifer,et al.  Poisson approximations of multinomial distributions and point processes , 1988 .

[9]  A. Barbour Stein's method and poisson process convergence , 1988, Journal of Applied Probability.

[10]  Andrew D. Barbour,et al.  Local and Tail Approximations Near the Poisson Limit , 1989 .

[11]  Refinement of Poisson Approximation , 1989 .

[12]  Hans-Jürgen Witte A unification of some approaches to Poisson approximation , 1990, Journal of Applied Probability.

[13]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[14]  Metric multivariate Poisson approximation of the generalized multinomial distribution@@@Metric multivariate Poisson approximation of the generalized multinomial distribution , 1998 .

[15]  Bero Roos,et al.  Metric Multivariate Poisson Approximation of the Generalized Multinomial Distribution , 1999 .