Allosteric Coupling of Drug Binding and Intracellular Signaling in the A 2 A Adenosine Receptor Graphical Abstract Highlights

[1]  K. Wüthrich,et al.  Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor , 2018, Cell.

[2]  E. Segala,et al.  Structures of Human A1 and A2A Adenosine Receptors with Xanthines Reveal Determinants of Selectivity. , 2017, Structure.

[3]  Shan Jiang,et al.  Crystal structures of agonist-bound human cannabinoid receptor CB1 , 2017, Nature.

[4]  T. Ceska,et al.  Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket , 2017, Proceedings of the National Academy of Sciences.

[5]  Deborah S. Barkauskas,et al.  Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses. , 2016, Cancer cell.

[6]  A. Hirshfeld,et al.  Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation , 2016, Nature Communications.

[7]  A. J. Venkatakrishnan,et al.  Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region , 2016, Nature.

[8]  A. Leslie,et al.  Structure of the adenosine A2A receptor bound to an engineered G protein , 2016, Nature.

[9]  A. IJzerman,et al.  Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength. , 2016, Journal of medicinal chemistry.

[10]  S. Rasmussen,et al.  Allosteric coupling from G protein to the agonist binding pocket in GPCRs , 2016, Nature.

[11]  P Kolb,et al.  GPCRdb: the G protein‐coupled receptor database – an introduction , 2016, British journal of pharmacology.

[12]  K. Wüthrich,et al.  Ring current shifts in 19F-NMR of membrane proteins , 2016, Journal of Biomolecular NMR.

[13]  M. Zimmer,et al.  Activation of the A2A adenosine G-protein-coupled receptor by conformational selection , 2016, Nature.

[14]  S. Grzesiek,et al.  Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor , 2016, Nature.

[15]  A. Kruse,et al.  reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. , 2016 .

[16]  I. Shimada,et al.  Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μ-Opioid Receptor , 2015, Angewandte Chemie.

[17]  Aashish Manglik,et al.  Propagation of conformational changes during μ-opioid receptor activation , 2015, Nature.

[18]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[19]  A. Rufer,et al.  Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. , 2015, Biochimica et biophysica acta.

[20]  Hugo Gutiérrez-de-Terán,et al.  Sodium Ion Binding Pocket Mutations and Adenosine A2A Receptor Function , 2015, Molecular Pharmacology.

[21]  I. Shimada,et al.  Functional dynamics of deuterated β2 -adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. , 2014, Angewandte Chemie.

[22]  Vadim Cherezov,et al.  Allosteric sodium in class A GPCR signaling. , 2014, Trends in biochemical sciences.

[23]  B. Kobilka,et al.  The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. , 2014, Current opinion in cell biology.

[24]  Bryan L. Roth,et al.  Molecular control of δ-opioid receptor signalling , 2014, Nature.

[25]  K. Wüthrich,et al.  Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. , 2013, Current opinion in structural biology.

[26]  R. Dror,et al.  The role of ligands on the equilibria between functional states of a G protein-coupled receptor. , 2013, Journal of the American Chemical Society.

[27]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[28]  D. Guo,et al.  Biased and Constitutive Signaling in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices 6 and 7* , 2013, The Journal of Biological Chemistry.

[29]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[30]  Michel Bouvier,et al.  Restructuring G-Protein- Coupled Receptor Activation , 2012, Cell.

[31]  Ichio Shimada,et al.  Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region , 2012, Nature Communications.

[32]  K. Chung,et al.  Role of Detergents in Conformational Exchange of a G Protein-coupled Receptor* , 2012, The Journal of Biological Chemistry.

[33]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[34]  Joshua M. Kunken,et al.  Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. , 2012, Structure.

[35]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[36]  Vadim Cherezov,et al.  Diversity and modularity of G protein-coupled receptor structures. , 2012, Trends in pharmacological sciences.

[37]  M. Congreve,et al.  Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. , 2011, Structure.

[38]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[39]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[40]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[41]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[42]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[44]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[45]  L. Pardo,et al.  Ligand-specific regulation of the extracellular surface of a G protein coupled receptor , 2009, Nature.

[46]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[47]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[48]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[49]  T. Schwartz,et al.  Metal Ion Site Engineering Indicates a Global Toggle Switch Model for Seven-transmembrane Receptor Activation* , 2006, Journal of Biological Chemistry.

[50]  Viktor Hornak,et al.  Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. , 2006, Journal of molecular biology.

[51]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[52]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[53]  J. Ramachandran,et al.  Structure and Function of G Protein Coupled Receptors , 1990, Pharmaceutical Research.

[54]  Tzvetelina Dimitrova,et al.  Adenosine A2A receptor antagonist treatment of Parkinson’s disease , 2003, Neurology.

[55]  A. Ohta,et al.  Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage , 2001, Nature.

[56]  T. Dunwiddie,et al.  The Role and Regulation of Adenosine in the Central Nervous System , 2022 .

[57]  S. W. Lin,et al.  Analysis of functional microdomains of rhodopsin. , 2000, Methods in enzymology.

[58]  J. Klein-Seetharaman,et al.  NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H Weinstein,et al.  Functional role of the spatial proximity of Asp114(2.50) in TMH 2 and Asn332(7.49) in TMH 7 of the μ opioid receptor , 1999, FEBS letters.

[60]  J. Vincent,et al.  Pivotal role of an aspartate residue in sodium sensitivity and coupling to G proteins of neurotensin receptors. , 1999, Molecular pharmacology.

[61]  T. Sakmar,et al.  Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin. , 1998, Biochemistry.

[62]  S. O. Smith,et al.  Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. , 1998, Biochemistry.

[63]  M. Abood,et al.  Mutation of a highly conserved aspartate residue in the second transmembrane domain of the cannabinoid receptors, CB1 and CB2, disrupts G-protein coupling. , 1998, The Journal of pharmacology and experimental therapeutics.

[64]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. O. Smith,et al.  The steric trigger in rhodopsin activation. , 1997, Journal of molecular biology.

[66]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[67]  T. Palmer,et al.  Identification of an A2a adenosine receptor domain specifically responsible for mediating short-term desensitization. , 1997, Biochemistry.

[68]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[69]  S. W. Lin,et al.  Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. , 1996, Biochemistry.

[70]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[71]  K. Fahmy,et al.  Photoactivated state of rhodopsin and how it can form. , 1995, Biophysical chemistry.

[72]  K. Fahmy,et al.  Properties and Photoactivity of Rhodopsin Mutants , 1995 .

[73]  P. Corvol,et al.  Mutation of Asp74 of the rat angiotensin II receptor confers changes in antagonist affinities and abolishes G-protein coupling. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  H. Khorana,et al.  Rhodopsin mutants that bind but fail to activate transducin. , 1990, Science.

[75]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[76]  D. Cooper,et al.  Opiate Receptor‐Mediated Inhibition of Adenylate Cyclase in Rat Striatal Plasma Membranes , 1982, Journal of neurochemistry.

[77]  K. Wüthrich,et al.  Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor. , 1979, Biochimica et biophysica acta.

[78]  S. Snyder,et al.  Opiate Agonists and Antagonists Discriminated by Receptor Binding in Brain , 1973, Science.

[79]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[80]  K. Wüthrich High-resolution proton nuclear magnetic resonance spectroscopy of cytochrome. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[81]  O. Jardetzky,et al.  High-Resolution Nuclear Magnetic Resonance Spectra of Selectively Deuterated Staphylococcal Nuclease , 1968, Science.

[82]  W. D. Phillips,et al.  Manifestations of the tertiary structures of proteins in high-frequency nuclear magnetic resonance. , 1967, Journal of the American Chemical Society.

[83]  F. Bovey,et al.  Calculation of Nuclear Magnetic Resonance Spectra of Aromatic Hydrocarbons , 1958 .