Disks on a Sphere and two-dimensional Glasses

I describe the classic circle-packing problem on a sphere, and the analytic and numerical approaches that have been used to study it. I then present a very simple Markov-chain Monte Carlo algorithm, which succeeds in finding the best solutions known today. The behavior of the algorithm is put into the context of the statistical physics of glasses.

[1]  R. Robinson Arrangement of 24 points on a sphere , 1961 .

[2]  B. L. Waerden,et al.  Das Problem der dreizehn Kugeln , 1952 .

[3]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[4]  B. L. Waerden,et al.  Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  F. Stillinger,et al.  Packing Structures and Transitions in Liquids and Solids , 1984, Science.

[7]  Ludger Santen,et al.  Absence of thermodynamic phase transition in a model glass former , 2000, Nature.

[8]  B. W. Clare,et al.  The closest packing of equal circles on a sphere , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[10]  Rintoul,et al.  Metastability and Crystallization in Hard-Sphere Systems. , 1996, Physical review letters.

[11]  D. Kottwitz The densest packing of equal circles on a sphere , 1991 .

[12]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..