First-principles calculations on brazed diamond with FeCoCrNi high entropy alloys doped with strong carbide-forming elements

[1]  Qi Xu,et al.  Effects of Ce and La elements on interfacial bonding, thermal damage and mechanical performance of brazed diamonds with Ni Cr filler alloy , 2021 .

[2]  Liang Zhang Filler metals, brazing processing and reliability for diamond tools brazing: A review , 2021 .

[3]  Y. Kong,et al.  Effect of diffusion barrier and interfacial strengthening on the interface behavior between high entropy alloy and diamond , 2021 .

[4]  C. Tan,et al.  A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics , 2020 .

[5]  Mingyang Zhang,et al.  Microstructures and Wear Resistance of FeCoCrNi-Mo High Entropy Alloy/Diamond Composite Coatings by High Speed Laser Cladding , 2020 .

[6]  K. Prashanth,et al.  Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior , 2020 .

[7]  Xiaoming Zhang,et al.  Effect of active Ti element on the bonding characteristic of the Ag(111)/α-Al2O3(0001) interface by using first principle calculation , 2020 .

[8]  L. Duan,et al.  Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting , 2020 .

[9]  Qi Xu,et al.  Interfacial bonding mechanism and adhesive transfer of brazed diamond with Ni-based filler alloy: First-principles and experimental perspective , 2019, Carbon.

[10]  Q. Lin,et al.  Interfacial microstructures and mechanical integrity of synthetic diamond brazed by a low-temperature Cu-Sn-Cr filler alloy , 2019, Diamond and Related Materials.

[11]  B. Xiao,et al.  Interfacial characteristics and mechanical properties of the vacuum brazing diamond grains segment with Ni-Cr composite active filler and tungsten carbide reinforcement , 2019, Journal of Alloys and Compounds.

[12]  Amitava Ghosh,et al.  High vacuum brazing of synthetic diamond grits with steel using micro/nano Al2O3 reinforced Ag-Cu-Ti alloy , 2019, Journal of Materials Processing Technology.

[13]  Wei Zhang,et al.  Effect of Ti/Ni Coating of Diamond Particles on Microstructure and Properties of High-Entropy Alloy/Diamond Composites , 2019, Entropy.

[14]  G. Le,et al.  Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique , 2019, Journal of Alloys and Compounds.

[15]  Q. Fang,et al.  Microstructure and mechanical properties of FeCoCrNiNb high-entropy alloy coatings , 2018, Physica B: Condensed Matter.

[16]  Jinbin Lu,et al.  Evolution of interface carbide diamond brazed with filler alloy containing Cr , 2018, Diamond and Related Materials.

[17]  D. P. Sekulic,et al.  Research and Development of Powder Brazing Filler Metals for Diamond Tools: A Review , 2018 .

[18]  B. Sun,et al.  Effects of process parameters on interfacial microstructure, residual stresses, and properties of tunnel furnace brazed diamonds , 2018 .

[19]  Amitava Ghosh,et al.  On bond wear, grit-alloy interfacial chemistry and joint strength of synthetic diamond brazed with Ni-Cr-B-Si-Fe and Ti activated Ag-Cu filler alloys , 2018 .

[20]  A. Hu,et al.  Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal , 2018 .

[21]  H. Cui,et al.  First-principles study of adhesion strength and stability of the TiB2/TiC interface in composite materials , 2018 .

[22]  M. Qian,et al.  Analysis on brazed diamond joints with modified Cu-based filler alloy , 2017 .

[23]  Zikang Tang,et al.  The fcc-bcc crystallographic orientation relationship in AlxCoCrFeNi high-entropy alloys , 2016 .

[24]  Jie Liu,et al.  First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni) , 2016 .

[25]  K. Knowles,et al.  Interfacial reactions between sapphire and Ag-Cu-Ti-based active braze alloys , 2016 .

[26]  Jian Chen,et al.  Phase stability, elastic properties and electronic structures of Mg–Y intermetallics from first-principles calculations , 2015 .

[27]  Shaohua Xu,et al.  First-principles investigation of the binary intermetallics in Mg–Al–Sr alloy: Stability, elastic properties and electronic structure , 2014 .

[28]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[29]  Yaoping Xie,et al.  First principles study of Al and Ni segregation to the α-Fe/Cu (1 0 0) coherent interface and their effects on the interfacial cohesion , 2012 .

[30]  C. Artini,et al.  Diamond–metal interfaces in cutting tools: a review , 2012, Journal of Materials Science.

[31]  J. Yeh,et al.  On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys , 2011 .

[32]  Zushu Hu,et al.  Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys , 2010 .

[33]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  H. Hintermann,et al.  New generation superabrasive tool with monolayer configuration , 1992 .

[36]  C. Tan,et al.  Brazing ZrB2-SiC ceramics to Nb with a novel CoFeNiCrCu high entropy alloy , 2021 .

[37]  Wenyang Zhang,et al.  First-principles investigations of effects of solute elements on stability and electronic structure of laves phase/matrix interface in Ni-based superalloys , 2020 .

[38]  Jiu-hua Xu,et al.  The effects of solder alloys on the morphologies and mechanical properties of brazed diamond grits , 2014 .

[39]  Şadi Karagöz,et al.  Sintering of polycrystalline diamond cutting tools , 2007 .