Migration based parallel differential evolution learning in Asymmetric Subsethood Product Fuzzy Neural Inference System :A simulation study

This paper presents a detailed study on the various parameters of an island model based differential evolution learning scheme in asymmetric subsethood product fuzzy neural inference system (ASuPFuNIS). The systematic experimental study of the migration size, migration interval coupled with an in depth view of the diversity on each island leads to a better understanding of the algorithm. In the course of studying the effects of parameters some significant performance changes were observed on a standard benchmark function approximation problem.

[1]  Satish Kumar,et al.  Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS) , 2005, IEEE Transactions on Neural Networks.

[2]  Sushmita Mitra,et al.  Neuro-fuzzy rule generation: survey in soft computing framework , 2000, IEEE Trans. Neural Networks Learn. Syst..

[3]  Vaidy S. Sunderam,et al.  PVM: A Framework for Parallel Distributed Computing , 1990, Concurr. Pract. Exp..

[4]  Sankar K. Pal,et al.  Fuzzy multi-layer perceptron, inferencing and rule generation , 1995, IEEE Trans. Neural Networks.

[5]  Zbigniew Skolicki,et al.  The influence of migration sizes and intervals on island models , 2005, GECCO '05.

[6]  Ian T. Foster,et al.  Globus: a Metacomputing Infrastructure Toolkit , 1997, Int. J. High Perform. Comput. Appl..

[7]  Vassilis P. Plagianakos,et al.  Parallel evolutionary training algorithms for “hardware-friendly” neural networks , 2002, Natural Computing.

[8]  Anca L. Ralescu,et al.  An improved synthesis method for multilayered neural networks using qualitative knowledge , 1993, IEEE Trans. Fuzzy Syst..

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[11]  Marco Tomassini,et al.  Soft computing - integrating evolutionary, neural, and fuzzy systems , 2001 .

[12]  Carl Kesselman,et al.  Generalized communicators in the Message Passing Interface , 1996, Proceedings. Second MPI Developer's Conference.

[13]  Erick Cantú-Paz,et al.  Migration Policies, Selection Pressure, and Parallel Evolutionary Algorithms , 2001, J. Heuristics.

[14]  Sankar K. Pal,et al.  Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing , 1999 .

[15]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[16]  Satish Kumar,et al.  Some applications of an asymmetric subsethood product fuzzy neural inference system , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[17]  Satish Kumar,et al.  Subsethood-product fuzzy neural inference system (SuPFuNIS) , 2002, IEEE Trans. Neural Networks.

[18]  Marco Russo,et al.  FuGeNeSys-a fuzzy genetic neural system for fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[19]  Marco Russo,et al.  Genetic fuzzy learning , 2000, IEEE Trans. Evol. Comput..

[20]  Satish Kumar,et al.  Subsethood based adaptive linguistic networks for pattern classification , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[21]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[22]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[23]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[24]  Satish Kumar Jain,et al.  Neural networks : a classroom approach , 2005 .

[25]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[26]  Satish Kumar,et al.  Parallel Evolutionary Asymmetric Subsethood Product Fuzzy-Neural Inference System with Applications , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[27]  Marco Russo,et al.  Distributed fuzzy learning using the MULTISOFT machine , 2001, IEEE Trans. Neural Networks.

[28]  Nikola Kasabov,et al.  Neuro-Fuzzy Techniques for Intelligent Information Systems , 1999 .

[29]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[30]  Sankar K. Pal,et al.  Neuro-Fuzzy Pattern Recognition , 1999 .

[31]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[32]  Satish Kumar,et al.  Parallel Evolutionary Asymmetric Subsethood Product Fuzzy-Neural Inference System: An Island Model Approach , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[33]  Zbigniew Skolicki,et al.  Improving Evolutionary Algorithms with Multi-representation Island Models , 2004, PPSN.

[34]  Satish Kumar,et al.  Differential Evolution Based On-Line Feature Analysis in an Asymmetric Subsethood Product Fuzzy Neural Network , 2004, ICONIP.

[35]  R. Paul,et al.  Behavior of similarity-based neuro-fuzzy networks and evolutionary algorithms in time series model mining , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..