Approximate solution of Cauchy integral equations by using Lucas polynomials

[1]  D. Shokry,et al.  Chelyshkov polynomials strategy for solving 2-dimensional nonlinear Volterra integral equations of the first kind , 2022, Computational and Applied Mathematics.

[2]  Application of Lerch Polynomials to Approximate Solution of Singular Fredholm Integral Equations with Cauchy KernelApplication of Lerch Polynomials to Approximate Solution of Singular Fredholm Integral Equations with Cauchy Kernel , 2022, Applied Mathematics & Information Sciences.

[3]  Sirajul Haq,et al.  Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials , 2021, Engineering with Computers.

[4]  A. Seifi Numerical solution of certain Cauchy singular integral equations using a collocation scheme , 2020 .

[5]  M. Abdulkawi Bounded solution of Cauchy type singular integral equation of the first kind using differential transform method , 2018 .

[6]  M. Sezer,et al.  Hybrid Taylor-Lucas Collocation Method for Numerical Solution of High-Order Pantograph Type Delay Differential Equations with Variables Delays , 2017 .

[7]  T. Allahviranloo,et al.  An effective collocation technique to solve the singular Fredholm integral equations with Cauchy kernel , 2017 .

[8]  Y. H. Youssri,et al.  Generalized Lucas polynomial sequence approach for fractional differential equations , 2017 .

[9]  Taher Lotfi,et al.  A new efficient method for cases of the singular integral equation of the first kind , 2016, J. Comput. Appl. Math..

[10]  Uwe Fink,et al.  Numerical Solution Of Integral Equations , 2016 .

[11]  Youssri Hassan Youssri,et al.  SPECTRAL SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS VIA A NOVEL LUCAS OPERATIONAL MATRIX OF FRACTIONAL DERIVATIVES , 2016 .

[12]  M. Sezer,et al.  Lucas Polynomial Approach for System of High-Order Linear Differential Equations and Residual Error Estimation , 2015 .

[13]  Abdelaziz Mennouni,et al.  A note on solving Cauchy integral equations of the first kind by iterations , 2011, Appl. Math. Comput..

[14]  O. P. Singh,et al.  Homotopy Perturbation Method for Solving System of Generalized Abel's Integral Equations , 2011 .

[15]  O. P. Singh,et al.  Numerical Inversion of the Abel Integral Equation using Homotopy Perturbation Method , 2010 .

[16]  Mohammad Yaghobifar,et al.  Analytical solutions of characteristic singular integral equations in the class of rational functions , 2010 .

[17]  Maria Carmela De Bonis,et al.  Nyström method for Cauchy singular integral equations with negative index , 2009, J. Comput. Appl. Math..

[18]  Z. K. Eshkuvatov,et al.  Approximate solution of singular integral equations of the first kind with Cauchy kernel , 2009, Appl. Math. Lett..

[19]  Birendra Nath Mandal,et al.  Numerical solution of some classes of integral equations using Bernstein polynomials , 2007, Appl. Math. Comput..

[20]  T. Lotfi,et al.  VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND WITH SINGULAR KERNELS , 2007 .

[21]  Pawel Karczmarek,et al.  Application of Jacobi polynomials to approximate solution of a singular integral equation with Cauchy kernel , 2006, Appl. Math. Comput..

[22]  M. A. Abdou,et al.  On the numerical treatment of the singular integral equation of the second kind , 2003, Appl. Math. Comput..

[23]  Thomas Koshy,et al.  Fibonacci and Lucas Numbers with Applications: Koshy/Fibonacci , 2001 .

[24]  I. K. Lifanov,et al.  Singular Integral Equations and Discrete Vortices , 1996 .

[25]  M. Abdou,et al.  Krein's method with certain singular kernel for solving the integral equation of the first kind , 1994 .

[26]  M. Golberg Numerical solution of integral equations , 1990 .

[27]  M. Golberg Introduction to the Numerical Solution of Cauchy Singular Integral Equations , 1990 .