Nanomachines based on carbon nanotubes

Abstract The possibility for double-wall carbon nanotube to operate as the bolt and nut pair is studied. The barriers for relative motions of walls along the helical “thread” line and for jumps on neighbor helical lines are calculated as functions of wall lengths for the set of double-wall carbon nanotubes. The dynamics of relative motion of carbon nanotube walls along the helical line under the action of external forces is considered. Perforated nanodrill, variable nanoresistor and other nanotube based mechanical nanodevices using these motion are proposed. Possible operation modes of proposed nanodevices are discussed.

[1]  Yurii E. Lozovik,et al.  Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones , 1997 .

[2]  Giorgos Fagas,et al.  Theory of an all-carbon molecular switch , 2002 .

[3]  Charlier,et al.  Energetics of multilayered carbon tubules. , 1993, Physical review letters.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  T. Vuković,et al.  Super-slippery carbon nanotubes , 2001 .

[6]  David Tománek,et al.  Electronic and structural properties of multiwall carbon nanotubes , 1998 .

[7]  J. Sloan,et al.  Structural studies of multiwall carbon nanotubes by neutron diffraction , 1999 .

[8]  Bobby G. Sumpter,et al.  Dynamics of a laser driven molecular motor , 1995 .

[9]  K. W. H. STEVENS,et al.  Physics of the Solid State , 1957, Nature.

[10]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[11]  Zettl,et al.  Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes , 2000, Science.

[12]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[13]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[14]  S. Jarvis,et al.  Local Solvation Shell Measurement in Water Using a Carbon Nanotube Probe , 2000 .

[15]  Quanshui Zheng,et al.  Multiwalled carbon nanotubes as gigahertz oscillators. , 2002, Physical review letters.

[16]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[17]  Lu,et al.  Ground state and phase transitions in solid C60. , 1992, Physical review letters.

[18]  J. Gilman,et al.  Nanotechnology , 2001 .

[19]  I. Milošević,et al.  Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes , 1999 .

[20]  Sumio Iijima,et al.  Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy , 1980 .

[21]  László Forró,et al.  Beyond Gedanken Experiments , 2000, Science.

[22]  Y. Lozovik,et al.  Orientational melting of two-shell carbon nanoparticles: molecular dynamics study , 2000 .

[23]  Crespi,et al.  Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes , 2000, Physical review letters.

[24]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[25]  Riichiro Saito,et al.  Anomalous potential barrier of double-wall carbon nanotube , 2001 .

[26]  Malcolm L. H. Green,et al.  The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes , 2000 .

[27]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[28]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[29]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[30]  D. Srivastava A phenomenological model of the rotation dynamics of carbon nanotube gears with laser electric fields , 1997 .

[31]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .