Distributed construction of purely additive spanners

This paper studies the complexity of distributed construction of purely additive spanners in the CONGEST model. We describe algorithms for building such spanners in several cases. Because of the need to simultaneously make decisions at far apart locations, the algorithms use additional mechanisms compared to their sequential counterparts. We complement our algorithms with a lower bound on the number of rounds required for computing pairwise spanners. The standard reductions from set-disjointness and equality seem unsuitable for this task because no specific edge needs to be removed from the graph. Instead, to obtain our lower bound, we define a new communication complexity problem that reduces to computing a sparse spanner, and prove a lower bound on its communication complexity. This technique significantly extends the current toolbox used for obtaining lower bounds for the CONGEST model, and we believe it may find additional applications.

[1]  David Peleg,et al.  (1 + εΒ)-spanner constructions for general graphs , 2001, STOC '01.

[2]  Michael Elkin,et al.  A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners , 2006, PODC '07.

[3]  David Peleg,et al.  Distributed Algorithms for Network Diameter and Girth , 2012, ICALP.

[4]  Michael Elkin,et al.  Efficient algorithms for constructing (1+∊,β)-spanners in the distributed and streaming models , 2006, Distributed Computing.

[5]  Shiri Chechik Compact routing schemes with improved stretch , 2013, PODC '13.

[6]  Stephan Holzer,et al.  Approximation of Distances and Shortest Paths in the Broadcast Congest Clique , 2014, OPODIS.

[7]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[8]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[9]  Jian Zhang,et al.  Efficient algorithms for constructing (1+, varepsilon;, beta)-spanners in the distributed and streaming models. , 2004, PODC 2004.

[10]  Shiri Chechik,et al.  Compact Routing Schemes , 2016, Encyclopedia of Algorithms.

[11]  Michael Elkin,et al.  Sparse Sourcewise and Pairwise Distance Preservers , 2006, SIAM J. Discret. Math..

[12]  Michael Elkin,et al.  Efficient algorithms for constructing (1+,ε, β)-spanners in the distributed and streaming models , 2004, PODC '04.

[13]  Fabrizio Grandoni,et al.  On Pairwise Spanners , 2013, STACS.

[14]  Telikepalli Kavitha,et al.  Small Stretch Pairwise Spanners , 2013, ICALP.

[15]  Aravind Srinivasan,et al.  Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons , 2003, J. Comput. Syst. Sci..

[16]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[17]  Amir Abboud,et al.  Error Amplification for Pairwise Spanner Lower Bounds , 2016, SODA.

[18]  Bilel Derbel,et al.  On the locality of distributed sparse spanner construction , 2008, PODC '08.

[19]  Amir Abboud,et al.  The 4/3 additive spanner exponent is tight , 2015, J. ACM.

[20]  Merav Parter,et al.  Bypassing Erdős' Girth Conjecture: Hybrid Stretch and Sourcewise Spanners , 2014, ICALP.

[21]  Seth Pettie Distributed algorithms for ultrasparse spanners and linear size skeletons , 2008, PODC '08.

[22]  Michael Elkin,et al.  Computing almost shortest paths , 2001, TALG.

[23]  Kurt Mehlhorn,et al.  Additive spanners and (α, β)-spanners , 2010, TALG.

[24]  Béla Bollobás,et al.  Sparse distance preservers and additive spanners , 2003, SODA '03.

[25]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[26]  Mikkel Thorup,et al.  Spanners and emulators with sublinear distance errors , 2006, SODA '06.

[27]  Seth Pettie,et al.  Low distortion spanners , 2007, TALG.

[28]  A. Razborov Communication Complexity , 2011 .

[29]  Michael Elkin,et al.  Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners , 2007, TALG.

[30]  Petar Maymounkov,et al.  Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance , 2011, STOC '12.

[31]  Bilel Derbel,et al.  Local Computation of Nearly Additive Spanners , 2009, DISC.

[32]  Bilel Derbel,et al.  Fast deterministic distributed algorithms for sparse spanners , 2008, Theor. Comput. Sci..

[33]  Telikepalli Kavitha,et al.  New Pairwise Spanners , 2017, Theory of Computing Systems.

[34]  Roger Wattenhofer,et al.  Optimal distributed all pairs shortest paths and applications , 2012, PODC '12.

[35]  Harald Niederreiter,et al.  Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..

[36]  Christoph Lenzen,et al.  Efficient distributed source detection with limited bandwidth , 2013, PODC '13.

[37]  Shiri Chechik,et al.  New Additive Spanners , 2013, SODA.

[38]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[39]  Fabian Kuhn,et al.  Distributed Minimum Cut Approximation , 2013, DISC.

[40]  John G. van Bosse,et al.  Wiley Series in Telecommunications and Signal Processing , 2006 .

[41]  Bilel Derbel,et al.  Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time , 2007, DISC.

[42]  David Peleg,et al.  (1+epsilon, beta)-Spanner Constructions for General Graphs , 2004, SIAM J. Comput..

[43]  P. Erdös On an extremal problem in graph theory , 1970 .

[44]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[45]  Fabian Kuhn,et al.  Distributed connectivity decomposition , 2013, PODC.

[46]  Sandeep Sen,et al.  A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs , 2007, Random Struct. Algorithms.

[47]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[48]  David Peleg,et al.  A near-tight lower bound on the time complexity of distributed MST construction , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[49]  Soumojit Sarkar,et al.  Fully dynamic algorithm for graph spanners with poly-logarithmic update time , 2008, SODA '08.

[50]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[51]  Fabian Kuhn,et al.  On the power of the congested clique model , 2014, PODC.

[52]  Ami Paz,et al.  Distributed Construction of Purely Additive Spanners , 2016, DISC.

[53]  Mathias Bæk Tejs Knudsen,et al.  Additive Spanners: A Simple Construction , 2014, SWAT.

[54]  Roger Wattenhofer,et al.  Networks cannot compute their diameter in sublinear time , 2012, SODA.

[55]  Uri Zwick,et al.  On Dynamic Shortest Paths Problems , 2004, Algorithmica.

[56]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[57]  Mikkel Thorup,et al.  Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.

[58]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[59]  David P. Woodruff Additive Spanners in Nearly Quadratic Time , 2010, ICALP.

[60]  Surender Baswana,et al.  Streaming algorithm for graph spanners - single pass and constant processing time per edge , 2008, Inf. Process. Lett..

[61]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[62]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[63]  Virginia Vassilevska Williams,et al.  Better Distance Preservers and Additive Spanners , 2015, SODA.

[64]  Piotr Indyk,et al.  Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.