Elasticity of lawsonite and seismological signature of metamorphism and water cycling in the subducting oceanic crust

The elastic properties of lawsonite determined from equations of state, Brillouin scattering, acoustic velocity measurements, and first‐principles calculations are reviewed. Equations of state are essential for thermodynamic modelling of phase equilibrium at high pressure. Elastic tensor determinations allow calculation of the seismic properties of isotropic rocks, and of anisotropic rocks when combined with CPO determinations. Potential effects of low‐T, high‐P phase transitions in lawsonite on extrapolations to deep‐Earth conditions are discussed. Seismological data suggest that metamorphic zoning in active cold subduction zones can be resolved as low velocity layers down to 250 km. Mineral physics and phase equilibria indicate that lawsonite is the best candidate for explaining such low velocities. These layers are likely the image of water recycling to the deep mantle in subduction zones.

[1]  W. Ernst,et al.  Lawsonite blueschists and lawsonite eclogites as proxies for palaeo‐subduction zone processes: a review , 2014 .

[2]  N. Evans,et al.  Lawsonite geochemistry and stability – implication for trace element and water cycles in subduction zones , 2014 .

[3]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[4]  H. Jung,et al.  Petro‐fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: Implications for the low‐velocity upper layer in subducting slab, trench‐parallel seismic anisotropy, and eclogite detectability in the subduction zone , 2013 .

[5]  J. Nakajima,et al.  Seismic evidence for high pore pressures in the oceanic crust: Implications for fluid‐related embrittlement , 2013 .

[6]  J. Nakajima,et al.  Thermal–petrological controls on the location of earthquakes within subducting plates , 2013 .

[7]  B. Hacker Eclogite formation and the Rheology, Buoyancy, Seismicity, and H2O Content of Oceanic Crust , 2013 .

[8]  K. Michibayashi,et al.  Rheological contrast between glaucophane and lawsonite in naturally deformed blueschist from Diablo Range, California , 2013 .

[9]  M. Long CONSTRAINTS ON SUBDUCTION GEODYNAMICS FROM SEISMIC ANISOTROPY , 2013 .

[10]  J. Bass Elasticity of Minerals, Glasses, and Melts , 2013 .

[11]  J. Bass,et al.  High‐pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge , 2013 .

[12]  D. Frost,et al.  The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones , 2012 .

[13]  E. Salje,et al.  Order-parameter coupling in the improper ferroelectric lawsonite , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  T. Song,et al.  Localized seismic anisotropy associated with long‐term slow‐slip events beneath southern Mexico , 2012 .

[15]  B. Wood,et al.  Experimental Measurements of Trace Element Partitioning Between Lawsonite, Zoisite and Fluid and their Implication for the Composition of Arc Magmas , 2011 .

[16]  N. Christensen,et al.  High pore pressures and porosity at 35 km depth in the Cascadia subduction zone , 2011 .

[17]  E. Salje,et al.  Thermally activated proton hopping in lawsonite, the ferroelectric transition at 125 K, and the co-elastic phase transition at 270 K , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  C. Teyssier,et al.  Lawsonite vorticity and subduction kinematics , 2010 .

[19]  J. Bass,et al.  Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust , 2010 .

[20]  Y. Kono,et al.  P-wave velocity and anisotropy of lawsonite and epidote blueschists: Constraints on water transportation along subducting oceanic crust , 2010 .

[21]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[22]  Jay D. Bass,et al.  Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones , 2009 .

[23]  R. Clayton,et al.  Subducting Slab Ultra-Slow Velocity Layer Coincident with Silent Earthquakes in Southern Mexico , 2008, Science.

[24]  S. Sinogeikin,et al.  Sound velocities and elasticity of DHMS phase A to high pressure and implications for seismic velocities and anisotropy in subducted slabs , 2008 .

[25]  B. Hacker H2O subduction beyond arcs , 2008 .

[26]  J. Nakajima,et al.  Existence of a seismic belt in the upper plane of the double seismic zone extending in the along‐arc direction at depths of 70–100 km beneath NE Japan , 2006 .

[27]  T. Tsujimori,et al.  Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites , 2006 .

[28]  T. Duffy,et al.  Single-crystal elasticity of zoisite Ca2Al3Si3O12(OH) by Brillouin scattering , 2005 .

[29]  T. Armbruster,et al.  Ordering and elasticity associated with low-temperature phase transitions in lawsonite , 2005 .

[30]  J. Crocker,et al.  References and Notes Supporting Online Material Materials and Methods References Movies S1 and S2 the Subduction Zone Flow Field from Seismic Anisotropy: a Global View , 2022 .

[31]  G. Abers,et al.  Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature , 2004 .

[32]  D. Mainprice,et al.  Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy) , 2003 .

[33]  S. Sinogeikin,et al.  Single-Crystal Elastic Properties of Lawsonite and their Variation with Temperature , 2003 .

[34]  K. Knight,et al.  Spontaneous strain variations through the low temperature phase transitions of deuterated lawsonite , 2003 .

[35]  R. Angel,et al.  Equation of state and high-pressure phase transitions in lawsonite , 2003 .

[36]  J. Connolly,et al.  Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth , 2002 .

[37]  J. Bascou,et al.  EBSD-measured lattice-preferred orientations and seismic properties of eclogites , 2001 .

[38]  D. Allan,et al.  A high-pressure structural study of lawsonite using angle-dispersive powder-diffraction methods with synchrotron radiation , 2001, Mineralogical Magazine.

[39]  S. Sinogeikin,et al.  Single crystal elasticity of lawsonite , 2000 .

[40]  W. Schranz,et al.  Optical, elastic, and dielectric studies of the phase transitions in lawsonite , 2000 .

[41]  M. Hanfland,et al.  High-pressure behaviour of lawsonite a phase transition at 8.6 GPa , 2000 .

[42]  S. Clark,et al.  The equation of state of lawsonite to 7 GPa and 873 K, and calculation of its high pressure stability , 2000 .

[43]  G. Abers Hydrated subducted crust at 100–250 km depth , 2000 .

[44]  M. Hanfland,et al.  P-V-T equation of state of lawsonite , 1999 .

[45]  K. Okamoto,et al.  The high-pressure synthesis of lawsonite in the MORB+H2O system , 1999 .

[46]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[47]  S. Ono Stability limits of hydrous minerals in sediment and mid‐ocean ridge basalt compositions: Implications for water transport in subduction zones , 1998 .

[48]  G. Abers,et al.  Slab low‐velocity layer in the eastern Aleutian subduction zone , 1997 .

[49]  G. Abers,et al.  Dispersion of regional body waves at 100–150 km depth beneath Alaska: In situ constraints on metamorphism of subducted crust , 1996 .

[50]  Simon A. T. Redfern,et al.  Volume behavior of hydrous minerals at high pressure and temperature: I. Thermal expansion of lawsonite, zoisite, clinozoisite, and diaspore , 1996 .

[51]  Simon A. T. Redfern,et al.  Volume behavior of hydrous minerals at high pressure and temperature: II. Compressibilities of lawsonite, zoisite, clinozoisite, and epidote , 1996 .

[52]  T. Armbruster,et al.  Low-temperature phase transitions and role of hydrogen bonds in lawsonite , 1995 .

[53]  S. Poli,et al.  H2O transport and release in subduction zones : experimental constraints on basaltic and andesitic systems , 1995 .

[54]  S. Poli,et al.  The stability of lawsonite and zoisite at high pressures: Experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere , 1994 .

[55]  A. Pawley The pressure and temperature stability limits of lawsonite: implications for H2O recycling in subduction zones , 1994 .

[56]  J. A. Pearce,et al.  Blueschist metamorphism in an active subduction zone , 1993, Nature.

[57]  W. Ernst Metamorphism of Franciscan tectonostratigraphic assemblage, Pacheco Pass area, east-central Diablo Range, California Coast Ranges , 1993 .

[58]  J. Holloway,et al.  Water Sources for Subduction Zone Volcanism: New Experimental Constraints , 1993, Science.

[59]  David Mainprice,et al.  A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals , 1990 .

[60]  J. Caron,et al.  The transition between blueschists and lawsonite-bearing eclogites based on observations from Corsican metabasalts , 1986 .

[61]  T. Duffy,et al.  Elasticity of enstatite and its relationship to crystal structure , 1986 .

[62]  Teruo Watanabe,et al.  Occurrence of lawsonite in pelitic schists from the Sanbagawa metamorphic belt, central Shikoku, Japan , 1984 .

[63]  Y. Fukao,et al.  A seismological constraint on the depth of basalt–eclogite transition in a subducting oceanic crust , 1983, Nature.

[64]  W. H. Baur Crystal structure refinement of lawsonite , 1978 .

[65]  K. Nitsch Das $$P{\text{ - }}T{\text{ - }}X_{{\text{CO}}_{\text{2}} } $$ Stabilitätsfeld von Lawsonit , 1972 .

[66]  J. Liou P—T Stabilities of Laumontite, Wairakite, Lawsonite, and Related Minerals in the System CaAl2Si2O8-SiO2-H2O , 1971 .

[67]  K. Nitsch Die Stabilität von Lawsonit , 1968, Naturwissenschaften.

[68]  B. McKee Widespread occurrence of jadeite, lawsonite, and glaucophane in central California , 1962 .

[69]  F. H. Raneóme XXIX. Ueber Lawsonit, ein neues gesteinsbildendes Mineral aus Californien , 2014 .

[70]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[71]  Michael G. Bostock,et al.  Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing , 2009, Nature.

[72]  B. Hacker H 2 O subduction beyond arcs , 2008 .

[73]  Plora Corvroor,et al.  Effects of temperature and pressure on the structure of lawsonite , 2007 .

[74]  EucnN Lrnowrrzrv,et al.  FTIR spectroscopy of lawsonite between 82 and 325 K , 2007 .

[75]  Duffy,et al.  O 12 ( OH ) by Brillouin scattering , 2007 .

[76]  Simon M. Peacock,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents , 2003 .

[77]  Klaus-Dieter Grevel,et al.  In situ X-ray diffraction investigation of lawsonite and zoisite at high pressures and temperatures , 2000 .

[78]  G. Helffrich Subducted Lithospheric Slab Velocity Structure: Observations and Mineralogical Inferences , 1996 .