Reinforcement Systems for Carbon Concrete Composites Based on Low-Cost Carbon Fibers
暂无分享,去创建一个
R. Böhm | M. Thieme | Daniel Wohlfahrt | Daniel Sebastian Jens Wolz | Benjamin Richter | Hubert Jäger | M. Thieme | R. Böhm | B. Richter | H. Jäger | D. S. Wolz | Daniel Wohlfahrt
[1] M. Sauer,et al. Market developments, trends, outlook and challenges , 2018 .
[2] Josef Hegger,et al. Prüfkonzept zur Untersuchung des Dauerstandverhaltens von textilbewehrtem Beton , 2017 .
[3] Patrick Ilg,et al. High-performance materials in infrastructure: a review of applied life cycle costing and its drivers – the case of fiber-reinforced composites , 2016 .
[4] Cost Estimation Model for PAN Based Carbon Fiber Manufacturing Process , 2016 .
[5] Chunxiang Lu,et al. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber , 2015 .
[6] Yong Ye,et al. Experimental Investigation on the Anchorage Performance of Clamping Anchors for Carbon Fiber Reinforced Polymer Rods , 2011 .
[7] Alexander Kahnt. Carbonbeton – Hochleistungsbaustoff mit Effizienzpotenzial / Carbon Concrete – a High-Performance Material with Great Efficiency Potential , 2016 .
[8] Axel S. Herrmann,et al. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber , 2015 .
[9] Venkatesh Kodur,et al. Variation of strength and stiffness of fibre reinforced polymer reinforcing bars with temperature , 2005 .
[10] A. Milbrandt,et al. Carbon Fiber from Biomass , 2016 .
[11] Manfred Curbach,et al. TEXTILE REINFORCED CONCRETE – FROM THE IDEA TO A HIGH PERFORMANCE MATERIAL , 2015 .
[12] Manfred Curbach,et al. Anwendungsbeispiele für Textilbetonverstärkung , 2015 .
[13] Johanna M. Spörl,et al. Carbon fibers: precursor systems, processing, structure, and properties. , 2014, Angewandte Chemie.
[14] B. Hanlon. DEPARTMENT OF COMMERCE , 2004 .
[15] M. Gude,et al. Influence of processing parameters on the properties of carbon fibres – an overview , 2016 .
[16] Bradley A. Newcomb,et al. Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber , 2016 .
[17] Viktor Mechtcherine,et al. Carbon Concrete Composites C3 – Nachhaltige Bindemittel und Betone für die Zukunft , 2017 .
[18] Josef Hegger,et al. Zum Tragverhalten von Betonbauteilen mit Faserverbundkunststoff-Bewehrung , 2009 .
[19] Xiaosong Huang,et al. Fabrication and Properties of Carbon Fibers , 2009, Materials.
[20] T. Gries,et al. Carbon fiber production costing: a modular approach , 2016 .
[21] Luke Bisby,et al. Evaluating the fire endurance of concrete slabs reinforced with FRP bars: Considerations for a holistic approach , 2007 .
[22] R. Protz,et al. A quantitative comparison of the capabilities of in situ computed tomography and conventional computed tomography for damage analysis of composites , 2015 .
[23] Zenon Achillides,et al. Bond behaviour of FRP bars in concrete , 1998 .
[24] Meng Zhang. Carbon Fibers Derived from Dry-Spinning of Modified Lignin Precursors , 2016 .
[25] Ershad U. Chowdhury,et al. Fire Performance of FRP Systems for Infrastructure: A State-of-the-Art Report , 2005 .
[26] F. Trifiró,et al. Acrylonitrile from Biomass: Still Far from Being a Sustainable Process , 2016, Topics in Catalysis.
[27] Han‐Ik Joh,et al. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers , 2015 .
[28] Anders Bennitz,et al. Development of Mechanical Anchor for CFRP Tendons Using Integrated Sleeve , 2010 .
[29] 구본철. PAN-based high strength and high modulus carbon fibers , 2015 .
[30] L. Malvar. Tensile and Bond Properties of GFRP Reinforcing Bars , 1995 .