Nanorobotics control design: a collective behavior approach for medicine

The authors present a new approach using genetic algorithms, neural networks, and nanorobotics concepts applied to the problem of control design for nanoassembly automation and its application in medicine. As a practical approach to validate the proposed design, we have elaborated and simulated a virtual environment focused on control automation for nanorobotics teams that exhibit collective behavior. This collective behavior is a suitable way to perform a large range of tasks and positional assembly manipulation in a complex three-dimensional workspace. We emphasize the application of such techniques as a feasible approach for the investigation of nanorobotics system design in nanomedicine. Theoretical and practical analyses of control modeling is one important aspect that will enable rapid development in the emerging field of nanotechnology.

[1]  T. Hogg,et al.  Nanorobots As Cellular Assistants in Inflammatory Responses , 2003 .

[2]  Robert A. Freitas,et al.  Kinematic Self-Replicating Machines , 2004 .

[3]  Aristides A. G. Requicha,et al.  Automatic planning of nanoparticle assembly tasks , 2001, Proceedings of the 2001 IEEE International Symposium on Assembly and Task Planning (ISATP2001). Assembly and Disassembly in the Twenty-first Century. (Cat. No.01TH8560).

[4]  Robert A. Freitas,et al.  A Personal Nanomedical Appliance to Replace Human Blood , 2002 .

[5]  K. Hamad-Schifferli,et al.  Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna , 2002, Nature.

[6]  Masami Hagiya,et al.  From Molecular Computing to Molecular Programming , 2000, DNA Computing.

[7]  Christopher G Thanos,et al.  Nanotechnology and medicine , 2003, Expert opinion on biological therapy.

[8]  Sylvain Martel,et al.  NanoWalker: a fully autonomous highly integrated miniature robot for nanoscale measurements , 1999, Industrial Lasers and Inspection.

[9]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[10]  Heinz Wörn,et al.  Parallel on-line motion planning for industrial robots , 1998 .

[11]  Aristides A. G. Requicha,et al.  Towards hierarchical nanoassembly , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[12]  C. Ronald Kube,et al.  Task Modelling in Collective Robotics , 1997, Auton. Robots.

[13]  Brent D. Cameron,et al.  Within a Nanometer of your Life , 2001 .

[14]  Adriano Cavalcanti Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine , 2003 .

[15]  Robert A. Freitas,et al.  Theoretical Analysis of Diamond Mechanosynthesis. Part I. Stability of C 2 Mediated Growth of Nanocrystalline Diamond C(110) Surface , 2004 .

[16]  W. G. Matthews,et al.  Controlled manipulation of molecular samples with the nanoManipulator , 2000 .

[17]  Itamar Willner,et al.  Glucose oxidase electrodes via reconstitution of the apo-enzyme: tailoring of novel glucose biosensors , 1999 .

[18]  M. Gao,et al.  Electric field directed layer-by-layer assembly of highly fluorescent CdTe nanoparticles. , 2001, Journal of nanoscience and nanotechnology.

[19]  David Baraff,et al.  Dynamic Simulation of Non-penetrating Rigid Bodies , 1992 .

[20]  N. Phan-Thien,et al.  The role of hydrodynamic interaction in the locomotion of microorganisms. , 1993, Biophysical journal.

[21]  R. Jeanne,et al.  Nest construction by the paper wasp, Polistes: a test of stigmergy theory , 1988, Animal Behaviour.

[22]  A. Hellemans German team creates new type of transistor-like device , 2003, IEEE Spectrum.

[23]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[24]  John Raeburn Just One Word: Plastics , 1997 .

[25]  Thierry Siméon,et al.  Indoor navigation with uncertainty using sensor-based motions , 1997, Proceedings of International Conference on Robotics and Automation.

[26]  Hideki Hashimoto,et al.  Teleoperated Nano Scale Object Manipulation , 1999 .

[27]  D. Scheinberg,et al.  Tumor Therapy with Targeted Atomic Nanogenerators , 2001, Science.

[28]  Glenn Fishbine The Investor's Guide to Nanotechnology & Micromachines , 2002 .

[29]  M N Ravi Kumar,et al.  Nano and microparticles as controlled drug delivery devices. , 2000, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[30]  Russell M. Taylor,et al.  Controlled manipulation of molecular samples with the nanoManipulator , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[31]  George A. Bekey,et al.  The Behavioral Self-organization Of Nanorobots Using Local Rules , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  G. Williger,et al.  National Science Foundation , 1962, American Antiquity.

[33]  T. Seeley,et al.  Collective decision-making in honey bees: how colonies choose among nectar sources , 1991, Behavioral Ecology and Sociobiology.

[34]  Adriano Cavalcanti,,et al.  Autonomous Multi-robot Sensor-Based Cooperation for Nanomedicine , 2002 .

[35]  Leonard M. Adleman,et al.  On constructing a molecular computer , 1995, DNA Based Computers.

[36]  Kemper Lewis,et al.  Robust Design Approach for Achieving Flexibility in Multidisciplinary Design , 1999 .

[37]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[38]  R. Weiss,et al.  Directed evolution of a genetic circuit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A S G Curtis Comment on "Nanorobotics control design: a collective behavior approach for medicine". , 2005, IEEE transactions on nanobioscience.

[40]  Tihamer T Toth-Fejel Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms , 2000 .

[41]  L. Geppert,et al.  The amazing vanishing transistor act , 2002 .

[42]  Tad Hogg,et al.  Multiagent control of self-reconfigurable robots , 2002, Artif. Intell..

[43]  Martin T. Hagan,et al.  An introduction to the use of neural networks in control systems , 2002 .

[44]  Carlo D. Montemagno,et al.  Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors , 2000 .

[45]  Robert A. Freitas,et al.  Progress in Nanomedicine and Medical Nanorobotics , 2004 .

[46]  Don Brutzman,et al.  Integrated simulation for rapid development of autonomous underwater vehicles , 1992, Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology.

[47]  S. K. Moore Just one word - plastics [organic semiconductors] , 2002 .

[48]  Andrew McCaskie,et al.  Nanomedicine , 2005, BMJ.

[49]  Fumihito Arai,et al.  Prototyping design and automation of micro/nano manipulation system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[50]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[51]  Louis L. Whitcomb,et al.  Underwater robotics: out of the research laboratory and into the field , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[52]  W. Heckl,et al.  Nanotechnology and medicine , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[53]  Roland Stracke,et al.  Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system , 2000 .

[54]  Freitas Robert A.Jr CURRENT STATUS OF NANOMEDICINE AND MEDICAL NANOROBOTICS , 2005 .

[55]  H. Berg,et al.  Dynamic properties of bacterial flagellar motors , 1974, Nature.

[56]  Aloysius K. Mok,et al.  A Multiframe Model for Real-Time Tasks , 1997, IEEE Trans. Software Eng..