Active fault-tolerant linear parameter varying control for the pitch actuator of wind turbines

This paper proposes a fault-tolerant control method using the virtual actuator for the problem of the pitch actuator failure. The simplified second-order transfer function of the pitch actuator is transformed into the identification equation using the Euler transformation. For the purpose of fault estimation, a least-squares batch identification algorithm is adopted to estimate the time-varying natural frequency and damping ratio. Then, according to the convex decomposition theory, the nonlinear model of wind turbines is converted to a linear parameter variation model. The fault-tolerant control structure of the virtual actuator is obtained by applying the state feedback law. In the light of the polyhedral approximation theory, an infinite number of linear matrix inequalities can be transformed into a finite number of linear matrix inequalities. The feedback controller is obtained after solving finite linear matrix inequalities. Finally, the simulation results show that the fault-tolerant control method with the fault estimation is capable of handling the pitch actuator failure and maintaining a constant power output.

[1]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[2]  Michel Verhaegen,et al.  FAULT DETECTION AND IDENTIFICATION OF ACTUATOR FAULTS USING LINEAR PARAMETER VARYING MODELS , 2005 .

[3]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[4]  Jakob Stoustrup,et al.  Robust and fault-tolerant linear parameter-varying control of wind turbines , 2011 .

[5]  Fernando D. Bianchi,et al.  Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design , 2006 .

[6]  Maria M. Seron,et al.  Invariant-set-based fault tolerant control using virtual sensors , 2011 .

[7]  Lucy Pao,et al.  Optimal Control of Wind Energy Systems: Towards a Global Approach (Munteanu, I. et al.; 2008) [Bookshelf] , 2009, IEEE Control Systems.

[8]  Vicenç Puig,et al.  Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter , 2012, Int. J. Appl. Math. Comput. Sci..

[9]  Feng Ding,et al.  Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling , 2017, Circuits Syst. Signal Process..

[10]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[11]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[12]  Feng Ding,et al.  An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering , 2016, J. Frankl. Inst..

[13]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[14]  Youmin Zhang,et al.  Bibliographical review on reconfigurable fault-tolerant control systems , 2003, Annu. Rev. Control..

[15]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[16]  Dinghui Wu,et al.  Fault diagnosis of variable pitch for wind turbines based on the multi-innovation forgetting gradient identification algorithm , 2015 .

[17]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[18]  Yide Wang,et al.  Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter. , 2016, ISA transactions.

[19]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[20]  Ji Zhi-cheng,et al.  Variable pitch control for wind energy conversion system with LPV dynamic compensation , 2009 .

[21]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[22]  Thomas Steffen,et al.  Control Reconfiguration of Dynamical Systems: Linear Approaches and Structural Tests , 2005 .

[23]  Sung Kyung Hong,et al.  An LMI-Based Fuzzy State Feedback Control with Multi-Objectives , 2003 .

[24]  Nathan van de Wouw,et al.  Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking , 2011, Autom..

[25]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[26]  Fan Wang,et al.  Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems , 2002, IEEE Trans. Autom. Control..

[27]  F. Ding,et al.  Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems , 2015 .

[28]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2004, IEEE Transactions on Automatic Control.

[29]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[30]  Feng Ding,et al.  The recursive least squares identification algorithm for a class of Wiener nonlinear systems , 2016, J. Frankl. Inst..

[31]  Qingxia Li,et al.  Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers , 2016, IEEE Geoscience and Remote Sensing Letters.

[32]  Michel Kinnaert,et al.  Diagnosis and Fault-tolerant Control, 2nd edition , 2006 .

[33]  Hao Wu,et al.  An adaptive confidence limit for periodic non-steady conditions fault detection , 2016 .

[34]  Fernando D. Bianchi,et al.  Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models , 2005 .

[35]  Didier Theilliol,et al.  Fault Tolerant Control Design For Polytopic LPV Systems , 2007, Int. J. Appl. Math. Comput. Sci..

[36]  Feng Ding,et al.  Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition , 2016, J. Comput. Appl. Math..

[37]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[38]  Damiano Rotondo,et al.  Fault estimation and virtual sensor FTC approach for LPV systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[39]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.

[40]  Youmin Zhang,et al.  A novel variable‐length sliding window blockwise least‐squares algorithm for on‐line estimation of time‐varying parameters , 2004 .

[41]  José A. De Doná,et al.  Fault-tolerant control of systems with convex polytopic linear parameter varying model uncertainty using virtual-sensor-based controller reconfiguration , 2013, Annu. Rev. Control..