The thickness and chromatic number of r-inflated graphs

A graph has thickness t if the edges can be decomposed into t and no fewer planar layers. We study one aspect of a generalization of Ringel's famous Earth-Moon problem: what is the largest chromatic number of any thickness-2 graph? In particular, given a graph G we consider the r-inflation of G and find bounds on both the thickness and the chromatic number of the inflated graphs. In some instances, the best possible bounds on both the chromatic number and thickness are achieved. We end with several open problems.

[1]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[2]  Michael Stiebitz,et al.  On a special case of Hadwiger's conjecture , 2003, Discuss. Math. Graph Theory.

[3]  P. Seymour,et al.  A new proof of the four-colour theorem , 1996 .

[4]  Xuding Zhu,et al.  Star-extremal graphs and the lexicographic product , 1996, Discret. Math..

[5]  Timothy W. Tillson,et al.  A Hamiltonian Decomposition of K & , 2 m > 8 , 2003 .

[6]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[7]  J. Hutchinson,et al.  Coloring Ordinary Maps, Maps of Empires, and Maps of the Moon , 1993 .

[8]  P. Hell,et al.  Some results on the Oberwolfach problem , 1974 .

[9]  V B Alekseev,et al.  THE THICKNESS OF AN ARBITRARY COMPLETE GRAPH , 1976 .

[10]  Paul A. Catlin,et al.  Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.

[11]  P. Hell,et al.  Some results on the Oberwolfach problem , 1974 .

[12]  John Michael Vasak The Thickness of The Complete Graph , 1976 .

[13]  E. Williams Experimental Designs Balanced for the Estimation of Residual Effects of Treatments , 1949 .

[14]  Jorge Nuno Silva,et al.  Mathematical Games , 1959, Nature.

[15]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[16]  Carsten Thomassen,et al.  Some remarks on Hajo's' conjecture , 2005, J. Comb. Theory, Ser. B.

[17]  G. Ringel Färbungsprobleme auf Flächen und Graphen , 1959 .

[18]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[19]  Ellen Gethner,et al.  Thickness-Two Graphs Part Two: More New Nine-Critical Graphs, Independence Ratio, Cloned Planar Graphs, and Singly and Doubly Outerplanar Graphs , 2009, Graphs Comb..

[20]  R. Gangolli Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one , 1977 .

[21]  K. Appel,et al.  Microfiche supplement to “Every planar map is four colorable” , 1977 .

[22]  D. West Introduction to Graph Theory , 1995 .

[23]  G. Ringel,et al.  PEARLS in GRAPH THEORY , 2007 .

[24]  Timothy W. Tillson A Hamiltonian decomposition of K2m*, 2m >= 8 , 1980, J. Comb. Theory B.

[25]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[26]  W. T. Tutte The Non-Biplanar Character of the Complete 9-Graph , 1963, Canadian Mathematical Bulletin.

[27]  O. Ore The Four-Color Problem , 1967 .

[28]  Debra L. Boutin,et al.  Thickness-two graphs part one: New nine-critical graphs, permuted layer graphs, and Catlin's graphs , 2008 .

[29]  Paul D. Seymour,et al.  Graph Minors. XIX. Well-quasi-ordering on a surface , 2004, J. Comb. Theory, Ser. B.

[30]  Tommy R. Jensen,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .