The thickness and chromatic number of r-inflated graphs
暂无分享,去创建一个
[1] Robin J. Wilson. EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .
[2] Michael Stiebitz,et al. On a special case of Hadwiger's conjecture , 2003, Discuss. Math. Graph Theory.
[3] P. Seymour,et al. A new proof of the four-colour theorem , 1996 .
[4] Xuding Zhu,et al. Star-extremal graphs and the lexicographic product , 1996, Discret. Math..
[5] Timothy W. Tillson,et al. A Hamiltonian Decomposition of K & , 2 m > 8 , 2003 .
[6] C. Nash-Williams. Decomposition of Finite Graphs Into Forests , 1964 .
[7] J. Hutchinson,et al. Coloring Ordinary Maps, Maps of Empires, and Maps of the Moon , 1993 .
[8] P. Hell,et al. Some results on the Oberwolfach problem , 1974 .
[9] V B Alekseev,et al. THE THICKNESS OF AN ARBITRARY COMPLETE GRAPH , 1976 .
[10] Paul A. Catlin,et al. Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.
[11] P. Hell,et al. Some results on the Oberwolfach problem , 1974 .
[12] John Michael Vasak. The Thickness of The Complete Graph , 1976 .
[13] E. Williams. Experimental Designs Balanced for the Estimation of Residual Effects of Treatments , 1949 .
[14] Jorge Nuno Silva,et al. Mathematical Games , 1959, Nature.
[15] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[16] Carsten Thomassen,et al. Some remarks on Hajo's' conjecture , 2005, J. Comb. Theory, Ser. B.
[17] G. Ringel. Färbungsprobleme auf Flächen und Graphen , 1959 .
[18] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[19] Ellen Gethner,et al. Thickness-Two Graphs Part Two: More New Nine-Critical Graphs, Independence Ratio, Cloned Planar Graphs, and Singly and Doubly Outerplanar Graphs , 2009, Graphs Comb..
[20] R. Gangolli. Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one , 1977 .
[21] K. Appel,et al. Microfiche supplement to “Every planar map is four colorable” , 1977 .
[22] D. West. Introduction to Graph Theory , 1995 .
[23] G. Ringel,et al. PEARLS in GRAPH THEORY , 2007 .
[24] Timothy W. Tillson. A Hamiltonian decomposition of K2m*, 2m >= 8 , 1980, J. Comb. Theory B.
[25] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[26] W. T. Tutte. The Non-Biplanar Character of the Complete 9-Graph , 1963, Canadian Mathematical Bulletin.
[27] O. Ore. The Four-Color Problem , 1967 .
[28] Debra L. Boutin,et al. Thickness-two graphs part one: New nine-critical graphs, permuted layer graphs, and Catlin's graphs , 2008 .
[29] Paul D. Seymour,et al. Graph Minors. XIX. Well-quasi-ordering on a surface , 2004, J. Comb. Theory, Ser. B.
[30] Tommy R. Jensen,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .