Pulsars as probes of newtonian dynamical systems

As clocks, pulsars rival the best atomic clocks on Earth. Though the rest-frame ‘tick’ rate (period P) of any given pulsar is unknown, the rest-frame rates of change of the periods are known to be very small. Therefore when they are observed to be large, one is quite certain that the rate of changes must be due to changing Doppler shifts: Ṗ to acceleration, P̈ to jerk, and periodic shifts to orbiting companion stars or planets. The first two give otherwise unobtainable information on the density and masses of the stellar remnants in the cores of globular clusters. The orbits of binary pulsars provide a test of the theory of the evolution of red giant stars, and in globular clusters provide the first direct evidence for the three- and four-body encounters which are believed to determine the dynamical evolution of globular clusters. The orbits of binary pulsars in our own Galaxy also show evidence for the fluctuations which the fluctuation-dissipation theorem implies should occur during the dissipative tidal circularization of orbits. And newtonian dynamical effects may soon add irrefutable confirmation to recent observations suggesting that some pulsars are surrounded by planetary systems similar to our own. There may not be life on their planets, but pulsars certainly breathe new life into the study of newtonian dynamical systems.

[1]  P. C. Joss,et al.  The core mass-radius relation for giants - A new test of stellar evolution theory , 1987 .

[2]  A. Sweigart,et al.  Evolutionary sequences for red giant stars , 1978 .

[3]  S. Sigurdsson Dynamics of neutron stars and binaries in globular clusters or, Ménages à trois: revitalizing burnt out degenerates through partner swapping , 1992 .

[4]  J. Drew,et al.  Spectroscopy of the M15 X-ray source: discovery of binary motion and an unusual systemic velocity , 1988 .

[5]  J. Zahn Tidal friction in close binary stars , 1977 .

[6]  M. S. Hjellming,et al.  Thresholds for rapid mass transfer in binary systems. I. Polytropic models , 1987 .

[7]  Joseph H. Taylor,et al.  High-precision timing of millisecond pulsars. I - Astrometry and masses of the PSR 1855 + 09 system , 1991 .

[8]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[9]  R. Blandford,et al.  Timing a millisecond pulsar in a globular cluster , 1987 .

[10]  S. Teukolsky,et al.  An observational test for the existence of a planetary system orbiting PSR1257 + 12 , 1992, Nature.

[11]  T. Lauer,et al.  The postcollapse core of M15 imaged with the HST planetary camera , 1991 .

[12]  C. Clarke,et al.  The effect of an external disk on the orbital elements of a central binary , 1991 .

[13]  H. Richer,et al.  Deep CCD photometry in globular clusters III. M15 , 1985 .

[14]  S. Refsdal,et al.  Shell Source Burning Stars with Highly Condensed Cores , 1970 .

[15]  A. Lyne,et al.  Timing measurements of the binary millisecond pulsar in the globular cluster M4 , 1988, Nature.

[16]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[17]  R. Malhotra,et al.  Resonant orbital evolution in the putative planetary system of PSR1257 + 12 , 1992, Nature.

[18]  J. Gunn,et al.  Dynamical studies of globular clusters based on photoelectric radial velocities of individual stars. I. M3. , 1979 .

[19]  A. Lyne,et al.  PSR 1820–11: a binary pulsar in a wide and highly eccentric orbit , 1989, Nature.

[20]  S. Rappaport,et al.  Formation of isolated millisecond pulsars in globular clusters , 1987, Nature.

[21]  G. Hasinger,et al.  ROSAT discovery of bright X-ray sources in globular clusters Ter 6 and NGC 6652 , 1991 .

[22]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[23]  D. Heggie,et al.  Dynamical effects of primordial binaries in star clusters. I : Equal masses , 1992 .

[24]  A. Meiksin,et al.  The evolution of highly compact binary stellar systems in globular clusters , 1984 .

[25]  S. Anderson,et al.  Timing Observations of the 8-Hr Binary Pulsar 2127+11C in the Globular Cluster M15 , 1991 .

[26]  J. Goodman,et al.  Fokker-Planck calculations of star clusters with primordial binaries , 1991 .

[27]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[28]  Michael Shao,et al.  Determination of the visual orbit of the spectroscopic binary Alpha Andromedae with submilliarcsecond precision , 1992 .

[29]  A. Lyne,et al.  A 5.75-millisecond pulsar in the globular cluster 47 Tucanae , 1990, Nature.

[30]  A. Wolszczan A nearby 37.9-ms radio pulsar in a relativistic binary system , 1991, Nature.

[31]  S. Anderson,et al.  Old pulsars in the low-density globular clusters MI3 and M53 , 1991, Nature.

[32]  S. R. Kulkarni,et al.  Discovery of two radio pulsars in the globular cluster M15 , 1990, Nature.

[33]  J. Zahn Les marées dans une étoile double serrée (suite) , 1966 .

[34]  D. Nice,et al.  Eclipses of the ablating binary pulsar PSR1744–24A , 1991, Nature.

[35]  P. Massey,et al.  Massive stars in Cyg OB2 , 1991 .

[36]  E. Phinney,et al.  Binary pulsars before spin-up and PSR 1820-11. , 1991 .

[37]  E. Phinney,et al.  STATISTICS OF PULSARS IN GLOBULAR CLUSTERS , 1992 .

[38]  P. Hut Binaries as a heat source in stellar dynamics: release of binding energy , 1983 .

[39]  H. Cohn,et al.  Realistic models for evolving globular clusters: core collapse with a mass spectrum , 1986 .

[40]  Simon Johnston,et al.  PSR 1259-63 : a binary radio pulsar with a Be star companion , 1992 .

[41]  S. Rappaport,et al.  Evolution of wide binary millisecond pulsars in globular clusters , 1989 .

[42]  R. Blandford,et al.  Arrival-time analysis for a millisecond pulsar , 1984 .

[43]  P. Seitzer,et al.  The nonthermal stellar dynamics of the globular cluster M15 , 1989 .

[44]  A. Lyne,et al.  Discovery of ten millisecond pulsars in the globular cluster 47 Tucanae , 1991, Nature.

[45]  S. McMillan,et al.  Formation and evolution of tidal binary systems , 1987 .

[46]  J. Hills The formation of binaries containing black holes by the exchange of companions and the X-ray sources in globular clusters. , 1976 .

[47]  J. Taylor,et al.  High-precision timing of millisecond pulsars. II - Astrometry, orbital evolution, and eclipses of PSR 1957 + 20 , 1991 .

[48]  M. Davis,et al.  Fundamental Astrometry and Millisecond Pulsars , 1988 .

[49]  D. Backer,et al.  Pulsar's double period confirmed , 1992, Nature.

[50]  A. Lyne Orbital inclination and mass of the binary pulsar PSR0655 + 64 , 1984, Nature.

[51]  E. Phinney,et al.  Ejection of pulsars and binaries to the outskirts of globular clusters , 1991, Nature.

[52]  S. Kulkarni,et al.  Deep radio synthesis images of globular clusters , 1990 .