A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis

The current paper presents a comprehensive comparison of double-K fracture toughness parameters of concrete evaluated using experimental method and four existing analytical methods. Fracture tests were carried out on compact tension wedge splitting specimens with various depths varying from 200 mm up to 1000 mm. In the analytical calculation, depending on the relationship between critical crack tip opening displacement and the abscissa value of turning point on bilinear softening curve, two different distributions of cohesive stress are considered along crack extension. Results show that four available analytical calculations yield almost the same values of double-K fracture toughness parameters and agree well with those obtained from the experiment, which confirms the consistency of five approaches. Size effect was discussed, including unstable fracture toughness, initiation fracture toughness, critical effective crack length, the length of critical fracture process zone and critical crack tip opening displacement.

[1]  Surendra P. Shah,et al.  A Fracture toughness criterion for concrete , 1985 .

[2]  H. Bueckner NOVEL PRINCIPLE FOR THE COMPUTATION OF STRESS INTENSITY FACTORS , 1970 .

[3]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[4]  Albert S. Kobayashi,et al.  Improved Nonlinear Model for Concrete Fracture , 1990 .

[5]  H. Reinhardt,et al.  Determination of double-Determination of double-K criterion for crack propagation in quasi-brittle fracture Part I: experimental investigation of crack propagation , 1999 .

[6]  H. Reinhardt,et al.  Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams , 1999 .

[7]  Hans W. Reinhardt,et al.  Tensile Tests and Failure Analysis of Concrete , 1986 .

[8]  M. F. Kaplan Crack Propagation and the Fracture of Concrete , 1961 .

[9]  P. F. Walsh FRACTURE OF PLAIN CONCRETE , 1972 .

[10]  J. E. Bailey,et al.  Fracture measurements on cement paste , 1976 .

[11]  B. Karihaloo,et al.  AN IMPROVED EFFECTIVE CRACK MODEL FOR THE DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE , 1989 .

[12]  Comite Euro-International du Beton,et al.  CEB-FIP Model Code 1990 , 1993 .

[13]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[14]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[15]  Surendra P. Shah,et al.  Softening Response of Plain Concrete in Direct Tension , 1985 .

[16]  H. Hilsdorf,et al.  Fracture mechanics studies on concrete compounds , 1977 .

[17]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[18]  Xiu-fang Zhang,et al.  Determination of fracture parameters for crack propagation in concrete using an energy approach , 2008 .

[19]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[20]  Bhushan Lal Karihaloo,et al.  Determination of specimen-size independent fracture toughness of plain concrete , 1986 .

[21]  S. Mindess,et al.  Effect of notch width on KIC for mortar and concrete , 1976 .

[22]  B. Karihaloo Fracture mechanics and structural concrete , 1995 .

[23]  H. Reinhardt,et al.  Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens , 1999 .

[24]  C. D. Pomeroy,et al.  Fracture toughness of cement paste and mortars , 1973 .

[25]  M. Elices,et al.  Fracture criteria for concrete: Mathematical approximations and experimental validation , 1990 .

[26]  B. Wang,et al.  Experimental study on the double-k fracture parameters and brittleness of concrete with different strengths, fracture mechanics of concrete and concrete structures-assessment, durability, monitoring and retrofitting of concrete structures , 2010 .

[27]  E. Brühwiler,et al.  Fracture energy and strain softening of concrete as determined by means of compact tension specimens , 1988 .

[28]  Sudhirkumar V. Barai,et al.  Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function , 2009 .

[29]  XU Shi-lang A PRACTICAL ANALYTICAL APPROACH TO THE DETERMINATION OF DOUBLE-K FRACTURE PARAMETERS OF CONCRETE , 2003 .

[30]  Shailendra Kumar,et al.  Size-effect Prediction from the Double-K Fracture Model for Notched Concrete Beam , 2010 .

[31]  P. F. Walsh Crack initiation in plain concrete , 1976 .

[32]  H. Reinhardt,et al.  A simplified method for determining double-K fracture parameters for three-point bending tests , 2000 .

[33]  Surendra P. Shah,et al.  Two Parameter Fracture Model for Concrete , 1985 .

[34]  Bhushan Lal Karihaloo,et al.  Effective crack model for the determination of fracture toughness (KIce) of concrete , 1990 .

[35]  Surendra P. Shah,et al.  Griffith Fracture Criterion and Concrete , 1971 .

[36]  Surendra P. Shah,et al.  Notched beam test: Mode I fracture toughness , 2004 .

[37]  Shailendra Kumar,et al.  Influence of specimen geometry on determination of double-K fracture parameters of concrete: a comparative study , 2008 .

[38]  G. Glinka,et al.  Universal features of weight functions for cracks in mode I , 1991 .

[39]  J. H. Brown,et al.  Measuring the fracture toughness of cement paste and mortar , 1972 .