Processing quantum information in diamond

Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during the last decade. Among other systems, such as ions in traps and superconducting circuits, solid state based qubits are considered to be promising candidates for use in first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defects in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploration of long coherence times (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to spin state read-out via spin-selective scattering of photons. This also allows the use of spin states as robust memory for flying qubits (photons).

[1]  J. Longdell,et al.  Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. , 2005, Physical review letters.

[2]  S. Ya. Kilin,et al.  A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins , 2005 .

[3]  S. Ya. Kilin,et al.  Ab initio modeling of the electronic and spin properties of the [NV]− centers in diamond nanocrystals , 2005 .

[4]  F. Jelezko,et al.  Generation of single color centers by focused nitrogen implantation , 2005, cond-mat/0505063.

[5]  F. Jelezko,et al.  Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition , 2004, cond-mat/0411245.

[6]  M. Mehring,et al.  Pseudoentanglement of spin states in the multilevel 15N@C60 system. , 2004, Physical review letters.

[7]  Fedor Jelezko,et al.  Read-out of single spins by optical spectroscopy , 2004 .

[8]  Christoph Becher,et al.  A single-photon source based on a single Ca+ ion , 2004 .

[9]  Matthew Sellars,et al.  Optical spin polarisation of the N-V centre in diamond , 2004 .

[10]  P. Horodecki,et al.  The ab initio calculations of single nitrogen–vacancy defect center in diamond , 2004 .

[11]  F. Jelezko,et al.  Stable single-photon source in the near infrared , 2004, quant-ph/0402213.

[12]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[13]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[14]  A. M. Stoneham,et al.  Exploiting the excited state , 2003 .

[15]  H. Häffner,et al.  How to realize a universal quantum gate with trapped ions , 2003, quant-ph/0312162.

[16]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[17]  A. S. Zibrov,et al.  Stationary pulses of light in an atomic medium , 2003, Nature.

[18]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[19]  A. Stoneham,et al.  Optically driven silicon-based quantum gates with potential for high-temperature operation , 2003 .

[20]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[21]  Alexander P. Nizovtsev,et al.  Single spin states in a defect center resolved by optical spectroscopy , 2002 .

[22]  T. Gacoin,et al.  Room temperature stable single-photon source , 2002 .

[23]  M. Lukin,et al.  Quantum memory for photons: Dark-state polaritons , 2001, quant-ph/0106066.

[24]  F. Jelezko,et al.  Modeling fluorescence of single nitrogen–vacancy defect centers in diamond , 2001 .

[25]  S. Ya. Kilin,et al.  Quantum computation using the 13C nuclear spins near the single NV defect center in diamond , 2001 .

[26]  T. Kennedy,et al.  Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond , 2001 .

[27]  M S Shahriar,et al.  Raman-excited spin coherences in nitrogen-vacancy color centers in diamond. , 2001, Optics letters.

[28]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[29]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[30]  Hitoshi Iba,et al.  What is Quantum Computer , 2001 .

[31]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[32]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[33]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[34]  A. Zaitsev,et al.  Vibronic spectra of impurity-related optical centers in diamond , 2000 .

[35]  N. Manson,et al.  Spectral hole burning and Raman heterodyne signals associated with an avoided crossing in the NV centre in diamond , 2000 .

[36]  Lukin,et al.  Dark-state polaritons in electromagnetically induced transparency , 2000, Physical review letters.

[37]  D. Twitchen,et al.  A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with their optical properties , 1999 .

[38]  N. Manson,et al.  Observation of electromagnetically induced transparency within an electron spin resonance transition , 1999 .

[39]  J.P.D. Martin,et al.  Fine structure of excited 3E state in nitrogen-vacancy centre of diamond , 1999 .

[40]  W. Johnson,et al.  Relativistic Many-Body Calculations of Transition Probabilities for the 2l12l2[LSJ]-2l32l4[L'S'J'] Lines in Be-like Ions , 1999 .

[41]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[42]  J. Cirac,et al.  Physical implementations for quantum communication in quantum networks , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[43]  M. Orrit,et al.  Driving the Bloch vector of a single molecule: towards a triggered single photon source , 1998 .

[44]  A. Stoneham,et al.  Comment on “Electronic structure of the N- V center in diamond: Theory” , 1997 .

[45]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[46]  D. Wineland,et al.  Quantum effects in measurements on trapped ions , 1995 .

[47]  B. Meyer,et al.  Slow emission of the 2.56 eV centre in synthetic diamond , 1994 .

[48]  S. Rand,et al.  Zeeman coherence and quantum beats in ultrafast photon echoes of N-V centers in diamond , 1994 .

[49]  Inspec,et al.  Properties and growth of diamond , 1994 .

[50]  H. Kawarada,et al.  Persistent hole burning of the nitrogen vacancy center and the 2.16 eV center of chemical‐vapor deposited diamond , 1992 .

[51]  van Oort E,et al.  Low-field optically detected magnetic resonance of a coupled triplet-doublet defect pair in diamond. , 1990, Physical review. B, Condensed matter.

[52]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[53]  S. Rand,et al.  Visible color-center laser in diamond. , 1985, Optics letters.

[54]  A. T. Collins,et al.  Luminescence decay time of the 1.945 eV centre in type Ib diamond , 1983 .