Accelerating molecular modeling applications with graphics processors

Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State‐of‐the‐art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general purpose computing as a result of recent advances in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs is presented, with an emphasis on their application to molecular mechanics simulations and the programming techniques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of long‐range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU‐based calculations are typically 10–100 times faster than heavily optimized CPU‐based implementations. The application of GPU acceleration to biomolecular simulation is also demonstrated through the use of GPU‐accelerated Coulomb‐based ion placement and calculation of time‐averaged potentials from molecular dynamics trajectories. A novel approximation to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Coulomb summation. In light of the performance obtained for this set of calculations, future applications of graphics processors to molecular dynamics simulations are discussed. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

[1]  Patricia J. Teller,et al.  Proceedings of the 2008 ACM/IEEE conference on Supercomputing , 2008, HiPC 2008.

[2]  Klaus Schulten,et al.  GPU acceleration of cutoff pair potentials for molecular modeling applications , 2008, CF '08.

[3]  P. Ivanov,et al.  Structure of the Ribosome , 2008 .

[4]  Jens H. Krüger,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007, Eurographics.

[5]  Yunfei Chen,et al.  GPU accelerated molecular dynamics simulation of thermal conductivities , 2007, J. Comput. Phys..

[6]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[7]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[8]  Stewart A. Adcock,et al.  Molecular dynamics: survey of methods for simulating the activity of proteins. , 2006, Chemical reviews.

[9]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[10]  William Kramer,et al.  Proceedings of the 2005 ACM/IEEE conference on Supercomputing , 2005 .

[11]  S. Joseph,et al.  Simulating movement of tRNA into the ribosome during decoding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Schulten,et al.  Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. , 2005, Structure.

[13]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[14]  David H. Bailey,et al.  High-precision floating-point arithmetic in scientific computation , 2004, Computing in Science & Engineering.

[15]  K. Schulten,et al.  Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. , 2004, Biophysical journal.

[16]  K. Réblová,et al.  Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. , 2004, Biophysical journal.

[17]  T. Steitz,et al.  The contribution of metal ions to the structural stability of the large ribosomal subunit. , 2004, RNA.

[18]  Nathan A. Baker,et al.  ISIM: A Program for Grand Canonical Monte Carlo Simulations of the Ionic Environment of Biomolecules , 2004 .

[19]  Stanimire Tomov,et al.  Benchmarking and implementation of probability-based simulations on programmable graphics cards , 2003, Comput. Graph..

[20]  Theo Ungerer,et al.  A survey of processors with explicit multithreading , 2003, CSUR.

[21]  C. Soares,et al.  Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. , 2003, Biophysical journal.

[22]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.

[23]  G. Hummer,et al.  Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. , 2002, Journal of the American Chemical Society.

[24]  Robert D. Skeel,et al.  Multiple grid methods for classical molecular dynamics , 2002, J. Comput. Chem..

[25]  S. Larson,et al.  The crystallographic structure of brome mosaic virus. , 2002, Journal of molecular biology.

[26]  D. Draper,et al.  A thermodynamic framework for Mg2+ binding to RNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. V. van Gunsteren,et al.  Comparison of different schemes to treat long‐range electrostatic interactions in molecular dynamics simulations of a protein crystal , 2001, Proteins.

[29]  Bilha Sandak,et al.  Multiscale fast summation of long‐range charge and dipolar interactions , 2001, J. Comput. Chem..

[30]  S. Larson,et al.  Satellite tobacco mosaic virus RNA: structure and implications for assembly. , 2001, Current opinion in structural biology.

[31]  D. Draper,et al.  Mg(2+) binding to tRNA revisited: the nonlinear Poisson-Boltzmann model. , 2000, Journal of molecular biology.

[32]  Alexander V. Veidenbaum,et al.  Proceedings of the 14th international conference on Supercomputing , 2000 .

[33]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[34]  I. Kuntz,et al.  Inclusion of Solvation in Ligand Binding Free Energy Calculations Using the Generalized-Born Model , 1999 .

[35]  T. Steitz,et al.  Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. , 1999, Science.

[36]  S. Cusack RNA-protein complexes. , 1999, Current opinion in structural biology.

[37]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[38]  P. Kollman,et al.  Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. , 1998, Science.

[39]  E. Westhof,et al.  Exploration of metal ion binding sites in RNA folds by Brownian-dynamics simulations. , 1998, Structure.

[40]  A. Ferré-D’Amaré,et al.  Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.

[41]  I. Tinoco,et al.  The ion core in RNA folding , 1997, Nature Structural Biology.

[42]  E. Westhof,et al.  RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. , 1997, Journal of molecular biology.

[43]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[44]  David E. Schimmel,et al.  Issues in the Design of High Performance SIMD Architectures , 1996, IEEE Trans. Parallel Distributed Syst..

[45]  J. Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1995, cond-mat/9511134.

[46]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[47]  Tony J. You,et al.  Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. , 1995, Biophysical journal.

[48]  D. Ringe,et al.  Enzyme crystal structure in a neat organic solvent. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[50]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[51]  J. W. Causey,et al.  Accelerated molecular dynamics simulation with the parallel fast multipole algorithm , 1992 .

[52]  A. Brandt,et al.  Multilevel matrix multiplication and fast solution of integral equations , 1990 .

[53]  L. W. Tucker,et al.  Architecture and applications of the Connection Machine , 1988, Computer.

[54]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[55]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[56]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[57]  C. Pleij,et al.  Hydrodynamic properties of RNA: effect of multivalent cations on the sedimentation behavior of turnip yellow mosaic virus RNA , 1985 .

[58]  Monty Denneau,et al.  The GF11 supercomputer , 1985, ISCA '85.

[59]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[60]  A. L. Vianna Interaction of calcium and magnesium in activating and inhibiting the nucleoside triphosphatase of sarcoplasmic reticulum vesicles , 1975 .

[61]  姜祈傑 「Science」與「Nature」之科學計量分析 , 2008 .

[62]  David J. Hardy,et al.  Multilevel summation for the fast evaluation of forces for the simulation of biomolecules , 2006 .

[63]  Pat Hanrahan,et al.  Stream computing on graphics hardware , 2005 .

[64]  Gregory Bryan Computing in Science and Engineering , 1999, IEEE Software.

[65]  D. Draper,et al.  On the role of magnesium ions in RNA stability , 1998, Biopolymers.

[66]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[67]  W. K. George,et al.  University of Illinois at Urbana-Champain , 1997 .

[68]  Compcon Digest of papers : Compcon Spring 90, February 26-March 2, 1990, Thirty-fifth IEEE Computer Society International Conference, San Francisco : Intellectual leverage , 1990 .

[69]  N. D. Durie,et al.  Digest of papers , 1976 .

[70]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .