Implementation of McEliece using quasi-dyadic Goppa codes

[1]  Paulo S. L. M. Barreto,et al.  Quasi-Dyadic CFS Signatures , 2010, Inscrypt.

[2]  Robert T. Chien,et al.  Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes , 1964, IEEE Trans. Inf. Theory.

[3]  Andrei V. Kelarev,et al.  The Theory of Information and Coding , 2005 .

[4]  Antoine Joux,et al.  Algorithmic Cryptanalysis , 2009 .

[5]  Nicholas J. Patterson,et al.  The algebraic decoding of Goppa codes , 1975, IEEE Trans. Inf. Theory.

[6]  Daniel J. Bernstein List Decoding for Binary Goppa Codes , 2011, IWCC.

[7]  Paulo S. L. M. Barreto,et al.  Compact McEliece Keys from Goppa Codes , 2009, IACR Cryptol. ePrint Arch..

[8]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[9]  Jean-Charles Faugère,et al.  Algebraic Cryptanalysis of McEliece Variants with Compact Keys , 2010, EUROCRYPT.

[10]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[11]  Paulo S. L. M. Barreto,et al.  Decoding square-free Goppa codes over Fp , 2010, IACR Cryptol. ePrint Arch..

[12]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[13]  Edoardo Persichetti,et al.  Compact McEliece keys based on quasi-dyadic Srivastava codes , 2012, J. Math. Cryptol..

[14]  Bhaskar Biswas,et al.  McEliece Cryptosystem Implementation: Theory and Practice , 2008, PQCrypto.

[15]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[16]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[17]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[18]  G. M.,et al.  Lehrbuch der Algebra , 1896, Nature.