Bipartite depolarizing maps

We introduce a 3-parameter class of maps (1) acting on a bipartite system which are a natural generalisation of the depolarizing channel (and include it as a special case). Then, we find the exact regions of the parameter space that alternatively determine a positive, completely positive, entanglement-breaking, or entanglement-annihilating map. This model displays a much richer behaviour than the one shown by a simple depolarizing channel, yet it stays exactly solvable. As an example of this richness, positive partial transposition but not entanglement-breaking maps is found in Theorem 2. A simple example of a positive yet indecomposable map is provided (see the Remark at the end of Section IV). The study of the entanglement-annihilating property is fully addressed by Theorem 7. Finally, we apply our results to solve the problem of the entanglement annihilation caused in a bipartite system by a tensor product of local depolarizing channels. In this context, a conjecture posed in the work of Filippov [J. Russ. Laser Res. 35, 484 (2014)] is affirmatively answered, and the gaps that the imperfect bounds of Filippov and Ziman [Phys. Rev. A 88, 032316 (2013)] left open are closed. To arrive at this result, we furthermore show how the Hadamard product between quantum states can be implemented via local operations.

[1]  M. Ziman,et al.  Bipartite entanglement-annihilating maps: Necessary and sufficient conditions , 2013, 1306.6525.

[2]  S. Filippov PPT-Inducing, Distillation-Prohibiting, and Entanglement-Binding Quantum Channels , 2014, 1409.4036.

[3]  M. Ziman,et al.  Local two-qubit entanglement-annihilating channels , 2011, 1110.3757.

[4]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[5]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[6]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[7]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Howard Barnum,et al.  Separable balls around the maximally mixed multipartite quantum states , 2003 .

[10]  M. Wolf,et al.  Activating distillation with an infinitesimal amount of bound entanglement. , 2002, Physical review letters.

[11]  J. Siewert,et al.  Quantifying entanglement resources , 2014, 1402.6710.

[12]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[13]  M. Ziman,et al.  Entanglement-annihilating and entanglement-breaking channels , 2010, 1006.2502.

[14]  J. H. Eberly,et al.  Genuinely multipartite concurrence of N -qubit X matrices , 2012, 1208.2706.

[15]  J. Siewert,et al.  Negativity as an estimator of entanglement dimension. , 2013, Physical review letters.

[16]  Tobias Moroder,et al.  Evaluating the geometric measure of multiparticle entanglement , 2014, 1412.7471.

[17]  Martin Plesch,et al.  Purification of genuine multipartite entanglement , 2011 .

[18]  Andrzej Kossakowski,et al.  Multipartite invariant states. I. Unitary symmetry , 2006 .

[19]  C. Mora,et al.  Class of positive-partial-transpose bound entangled states associated with almost any set of pure entangled states , 2006, quant-ph/0607061.

[20]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[21]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[22]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[23]  Satoshi Ishizaka Bound entanglement provides convertibility of pure entangled states. , 2004, Physical review letters.

[24]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[25]  A. Acin,et al.  Structural approximations to positive maps and entanglement-breaking channels , 2008, 0808.1052.

[26]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.