Inherent Size Effects on XANES of Nanometer Metal Clusters: Size-Selected Platinum Clusters on Silica

X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials; however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small-angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. The clusters are found to be stable during deposition and upon air exposure, but sinter if heated above ∼150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized; however, XPS shows that they are not. Inste...

[1]  Huanchen Zhai,et al.  Ensemble-Average Representation of Pt Clusters in Conditions of Catalysis Accessed through GPU Accelerated Deep Neural Network Fitting Global Optimization. , 2016, Journal of chemical theory and computation.

[2]  M. Oshima,et al.  In Situ Hard X-ray Photoelectron Study of O2 and H2O Adsorption on Pt Nanoparticles , 2016 .

[3]  M. El-Genk,et al.  Probability-based threshold displacement energies for oxygen and silicon atoms in α-quartz silica , 2016 .

[4]  Sung June Cho,et al.  Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst , 2016, Nature Communications.

[5]  Jiwhan Kim,et al.  Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. , 2016, Angewandte Chemie.

[6]  J. Thomas Catalysis: Tens of thousands of atoms replaced by one , 2015, Nature.

[7]  H. White,et al.  Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14). , 2015, Physical chemistry chemical physics : PCCP.

[8]  M. Moors,et al.  Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study , 2015, Materials.

[9]  Lu Shen,et al.  Pt–Zn Clusters on Stoichiometric MgO(100) and TiO2(110): Dramatically Different Sintering Behavior , 2015 .

[10]  S. Khanna,et al.  Initial and Final State Effects in the Ultraviolet and X-ray Photoelectron Spectroscopy (UPS and XPS) of Size-Selected Pdn Clusters Supported on TiO2(110) , 2015 .

[11]  S. Anderson,et al.  Effects of Alumina Thickness on CO Oxidation Activity over Pd20/Alumina/Re(0001): Correlated Effects of Alumina Electronic Properties and Pd20 Geometry on Activity , 2015 .

[12]  Xiaofeng Yang,et al.  FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes , 2014, Nature Communications.

[13]  S. Anderson,et al.  Oxygen activation and CO oxidation over size-selected Pt(n)/alumina/Re(0001) model catalysts: correlations with valence electronic structure, physical structure, and binding sites. , 2014, Physical chemistry chemical physics : PCCP.

[14]  L. Giordano,et al.  Understanding surface core-level shifts using the Auger parameter: A study of Pd atoms adsorbed on ultrathin SiO2 films , 2014 .

[15]  M. Flytzani-Stephanopoulos Gold atoms stabilized on various supports catalyze the water-gas shift reaction. , 2014, Accounts of chemical research.

[16]  S. Anderson,et al.  Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts , 2014 .

[17]  A. O'Mullane,et al.  From single crystal surfaces to single atoms: investigating active sites in electrocatalysis. , 2014, Nanoscale.

[18]  S. Anderson,et al.  Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source. , 2013, The Review of scientific instruments.

[19]  S. Anderson,et al.  Alumina support and Pdn cluster size effects on activity of Pdn for catalytic oxidation of CO. , 2013, Faraday discussions.

[20]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[21]  Sui‐Dong Wang,et al.  Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. , 2013, The Journal of chemical physics.

[22]  W. Eberhardt,et al.  Size-dependent XPS spectra of small supported Au-clusters , 2013 .

[23]  O. Sugino,et al.  Band gap of β-PtO2 from first-principles , 2012 .

[24]  S. Anderson,et al.  CO adsorption and desorption on size-selected Pd(n)/TiO2(110) model catalysts: size dependence of binding sites and energies, and support-mediated adsorption. , 2012, The Journal of chemical physics.

[25]  K. Shimizu,et al.  The average Pd oxidation state in Pd/SiO2 quantified by L3-edge XANES analysis and its effects on catalytic activity for CO oxidation , 2012 .

[26]  H. Hirata,et al.  Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces , 2011 .

[27]  Sungsik Lee,et al.  Simultaneous measurement of X-ray small angle scattering, absorption and reactivity: A continuous flow catalysis reactor , 2011 .

[28]  Sungsik Lee,et al.  Communication: Suppression of sintering of size-selected Pd clusters under realistic reaction conditions for catalysis. , 2011, The Journal of chemical physics.

[29]  Céline Chizallet,et al.  Modulation of catalyst particle structure upon support hydroxylation: Ab initio insights into Pd13 and Pt13/γ-Al2O3 , 2010 .

[30]  Paul N. Duchesne,et al.  X-ray spectroscopy studies on the surface structural characteristics and electronic properties of platinum nanoparticles. , 2009, The Journal of chemical physics.

[31]  Tianpin Wu,et al.  Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces , 2009, Science.

[32]  N. Isomura,et al.  Atomic-resolution imaging of size-selected platinum clusters on TiO(2)(110) surfaces. , 2009, The Journal of chemical physics.

[33]  S. Anderson,et al.  Cluster size effects on sintering, CO adsorption, and implantation in Ir/SiO(2). , 2009, The Journal of chemical physics.

[34]  Tianpin Wu,et al.  Size-dependent oxidation of Pdn (n ⩽ 13) on alumina/NiAl(110): Correlation with Pd core level binding energies , 2009 .

[35]  Vittal K. Yachandra,et al.  X-ray absorption spectroscopy , 2009, Photosynthesis Research.

[36]  K. Mitsuhara,et al.  Final state effect for Au 4f line from gold-nano-particles grown on oxides and HOPG supports , 2009 .

[37]  Pete R. Jemian,et al.  Irena: tool suite for modeling and analysis of small‐angle scattering , 2009 .

[38]  T. Kondow,et al.  Deposition of size-selected metal clusters on inert graphite surface with atomic anchors , 2009 .

[39]  Jisheng Pan,et al.  Origin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfaces , 2008 .

[40]  Byeongdu Lee,et al.  Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen , 2006 .

[41]  G. Faraci,et al.  Pinning of size-selected Pd nanoclusters on graphite. , 2006, The Journal of chemical physics.

[42]  Roger Smith,et al.  Modeling the pinning of Au and Ni clusters on graphite , 2006 .

[43]  H. Metiu,et al.  Pinning mass-selected Agn clusters on the TiO2(110)-1x1 surface via deposition at high kinetic energy. , 2005, The Journal of chemical physics.

[44]  Sungsik Lee,et al.  Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Au(n)/TiO2 catalysts. , 2005, The Journal of chemical physics.

[45]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[46]  E. C. Goldberg,et al.  Linear combination of atomic orbitals calculation of the Auger neutralization rate of He+ on Al(111), (100), and (110) surfaces , 2005 .

[47]  Stephen J. Riley,et al.  Thermal Stability of Supported Platinum Clusters Studied by in Situ GISAXS , 2004 .

[48]  Sungsik Lee,et al.  Deposition dynamics and chemical properties of size-selected Ir clusters on TiO2 , 2003 .

[49]  V. Esaulov,et al.  On Auger neutralization of He+ ions on a Ag(111) surface , 2003 .

[50]  R. Egdell,et al.  Initial and final state effects in photoemission from Au nanoclusters on TiO2(110) , 2002 .

[51]  Sungsik Lee,et al.  Sintering, oxidation, and chemical properties of size-selected nickel clusters on TiO2(110) , 2002 .

[52]  John J. Rehr,et al.  Sensitivity of Pt x-ray absorption near edge structure to the morphology of small Pt clusters , 2002 .

[53]  T. Zubkov,et al.  N2Chemisorption on Stepped Pt Surfaces. Control by 2-D and 1-D Precursor Behavior† , 2001 .

[54]  B. D. Kay,et al.  Control of amorphous solid water morphology using molecular beams. I. Experimental results , 2001 .

[55]  R. Schaub,et al.  Energetic cluster deposition on a dislocation network: Ag7 on 2 ML Ag/Pt(111) , 2001 .

[56]  A. Ankudinov,et al.  Effect of hydrogen adsorption on the x-ray absorption spectra of small Pt clusters. , 2001, Physical review letters.

[57]  D. Goodman,et al.  Modeling heterogeneous catalysts: metal clusters on planar oxide supports , 2000 .

[58]  Adam Lapicki,et al.  Kinematic sample mounting system for accurate positioning of transferrable samples , 2000 .

[59]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[60]  Fulvio Parmigiani,et al.  Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding , 1999 .

[61]  D. Goodman,et al.  Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure , 1998 .

[62]  K. Kern,et al.  Hard and soft landing of mass selected Ag clusters on Pt(111) , 1997 .

[63]  Jeffrey T. Miller,et al.  On the Relation Between Particle Morphology, Structure of the Metal-Support Interface and Catalytic Properties of Pt/gamma-Al2O3. , 1996 .

[64]  K. Tomishige,et al.  SUPPORTED IR AND PT CLUSTERS : REACTIVITY WITH OXYGEN INVESTIGATED BY EXTENDED X-RAY ABSORPTION FINE STRUCTURE SPECTROSCOPY , 1996 .

[65]  Anders Nilsson,et al.  Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods , 1995 .

[66]  B. Bellamy,et al.  Metallic clusters surface interaction: The case of Pd/SiOx/n-Si(100) , 1993 .

[67]  M. Harsdorff,et al.  Photoemission and electron microscopy of small supported palladium clusters , 1991 .

[68]  P. Fayet,et al.  Core level photoemission from monosize mass selected Pt clusters deposited on SiO2 and amorphous carbon , 1990 .

[69]  Fu,et al.  Photoemission from mass-selected monodispersed Pt clusters. , 1990, Physical review letters.

[70]  G. Maire,et al.  Palladium particles growth on various aluminas , 1989 .

[71]  Murata,et al.  Neutralization of noble-gas ions at very low energies. , 1989, Physical review. B, Condensed matter.

[72]  G. Derry,et al.  Work function of Pt(111). , 1989, Physical review. B, Condensed matter.

[73]  Hartford Eh,et al.  Photoelectron spectroscopy of single-size Au clusters collected on a substrate. , 1988 .

[74]  H. Baumgartel EXAFS, SEXAFS, XANES: X‐Ray Absorption ‐ Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Von D. Koningsberger und R. Prins. John Wiley & Sons Ltd., Chichester 1988. 673 S., Abb., Tab., Formeln. ISBN 0‐471‐87547‐3 , 1988 .

[75]  G. Wertheim,et al.  Noble- and transition-metal clusters: The d bands of silver and palladium. , 1986, Physical review. B, Condensed matter.

[76]  D. H. Maylotte,et al.  A Study of the K-edge Absorption Spectra of Selected Vanadium Compounds. , 1984 .

[77]  G. Wertheim,et al.  Unit Charge on Supported Gold Clusters in Photoemission Final State , 1983 .

[78]  H. Ibach,et al.  Adsorption of oxygen on Pt(111) , 1982 .

[79]  G. Ertl,et al.  A molecular beam study of the adsorption and desorption of oxygen from a Pt(111) surface , 1981 .

[80]  G. Fisher,et al.  Oxygen interactions with the Pt(111) surface , 1980 .

[81]  Michael J. Pellin,et al.  Reactivity of supported platinum nanoclusters studied by in situ GISAXS: clusters stability under hydrogen , 2006 .

[82]  M. Vece,et al.  Pinning of size-selected gold and nickel nanoclusters on graphite , 2005 .

[83]  H. Yoshida,et al.  Quantitative determination of platinum oxidation state by XANES analysis , 2005 .

[84]  D. Ramaker,et al.  Contribution of shape resonance and Pt–H EXAFS in the Pt L2,3 X-ray absorption edges of supported Pt particles: Application and consequences for catalyst characterization , 1999 .

[85]  H. Freund,et al.  On the separation of initial and final state effects in photoelectron spectroscopy using an extension of the auger-parameter concept , 1985 .