Extremal Behavior of Diffusion Models in Finance

AbstractWe investigate the extremal behavior of a diffusion Xt given by the SDE $$dX_t=\mu\left({X_t }\right)dt+{\sigma }\left({X_t}\right)dW_t ,t > 0,X_0=x$$ , where W is standard Brownian motion, μ is the drift term and σ is the diffusion coefficient. Under some appropriate conditions on Xt we prove that the point process of ε -upcrossings converges in distribution to a homogeneous Poisson process. As examples we study the extremal behavior of term structure models or asset price processes such as the Vasicek model, the Cox–Ingersoll–Ross model and the generalized hyperbolic diffusion. We also show how to construct a diffusion with pre-determined stationary density which captures any extremal behavior. As an example we introduce a new model, the generalized inverse Gaussian diffusion.

[1]  J. Pickands Upcrossing probabilities for stationary Gaussian processes , 1969 .

[2]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[3]  Michael Sørensen,et al.  Stock returns and hyperbolic distributions , 1999 .

[4]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[5]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[6]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[7]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[8]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[9]  S. Berman Sojourns and Extremes of Stochastic Processes , 1992 .

[10]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[11]  Michael M. Sørensen,et al.  A hyperbolic diffusion model for stock prices , 1996, Finance Stochastics.

[12]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[13]  Sidney I. Resnick,et al.  Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes , 1989 .

[14]  P. Mandl Analytical treatment of one-dimensional Markov processes , 1968 .

[15]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[16]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[17]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[18]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[19]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[20]  Richard A. Davis,et al.  Maximum and minimum of one-dimensional diffusions , 1982 .

[21]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[22]  D. Lamberton,et al.  Introduction au calcul stochastique appliqué à la finance , 1997 .