Analytical and Experimental Investigation of Mixing in Large Passive Containment Volumes
暂无分享,去创建一个
This final report details results from the past three years of the three-year UC Berkeley NEER investigation of mixing phenomena in large-scale passive reactor containments. We have completed all of our three-year deliverables specified in our proposal, as summarized for each deliverable in the body of this report, except for the experiments of steam condensation in the presence of noncondensable gas. We have particularly exiting results from the experiments studying the mixing in large insulated containment with a vertical cooling plate. These experiments now have shown why augmentation has been observed in wall-condensation experiments due to the momentum of the steam break-flow entering large volumes. More importantly, we also have shown that the forced-jet augmentation can be predicted using relatively simple correlations, and that it is independent of the break diameter and depends only on the break flow orientation, location, and momentum. This suggests that we will now be able to take credit for this augmentation in reactor safety analysis, improving safety margins for containment structures. We have finished the version 1 of 1-D Lagrangian flow and heat transfer code BMIX++. This version has ability to solve many complex stratified problems, such as multi-components problems, multi-enclosures problems (two enclosures connectedmore » by one connection for the current version), incompressible and compressible problems, multi jets, plumes, sinks in one enclosure problems, problems with wall conduction, and the combinations of the above problems. We believe the BMIX++ code is a very powerful computation tool to study stratified enclosures mixing problems.« less
[1] E. Lavernia,et al. An experimental investigation , 1992, Metallurgical and Materials Transactions A.
[2] Per F. Peterson,et al. Quantifying the Effects of Break Source Flow Rates on AP600 Containment Stratification , 2001 .